When Dementia is not Alzheimer’s
by James E. Galvin, MD, MPH and Stella Karantzoulis, PhD

Alzheimer’s disease (AD) is the most common cause of decline of memory and other cognitive abilities in older adults. The clinical criteria for AD includes an onset of months to years, a clear-cut history or progressive cognitive deterioration and associated decline in activities of daily living. The presentation of symptoms in AD is usually characterized by prominent impairment of short-term memory (called “episodic memory”), mood changes, and difficulties in judgment and problem-solving (called “executive function”). Individuals with AD may also be impaired in language such as word-finding ability, naming objects, and generating a list of words such as animals or vegetables that represents their knowledge about the meaning of words, objects, actions or ideas (called “semantic memory”).

continued on pg. 3

Diet, Supplements, and Memory
by Yael Zweig, NP

The longstanding advice of “eat a healthy diet” is routinely recommended by health care providers. That may sound simple, but what does it really mean? And what does diet have to do with memory? A good place to start for healthy diet advice comes from the Dietary Guidelines for Americans recommendations for following the USDA Food Patterns.

USDA Food Patterns include five major food groups of grains, vegetables, fruits, protein, dairy, oils, and solid fats and added sugars. Older adults should choose healthy options from the major food groups and limit solid fats and added sugars. The amount of calories one needs depends on gender and level of physical activity.

Another good option for older adults is the Dietary Approaches to Stop Hypertension (DASH) diet, especially for people with high blood pressure. More information about both the USDA Food Patterns and DASH diet can be found in the National Institute on Aging publication “What’s on your plate? Smart Food Choices for Healthy Aging”.

continued on pg. 5
I am very grateful for your involvement in the NYU Alzheimer’s Disease Center (ADC). We are now in our twenty-third year of support by the National Institute on Aging (NIA) as one of thirty ADCs across the United States. Our mission is to provide critical core resources that facilitate the important work of scientists who are studying normal brain aging and the nature, causes, early diagnosis, treatment and prevention of Alzheimer’s disease (AD) and related disorders. Here is a brief reminder of the programs you are able to participate in:

The ADC Clinical Core provides well-diagnosed research participants (healthy normal older adults and individuals with mild cognitive impairment and AD) who receive comprehensive annual research evaluations. The Clinical Core also collects and stores biological material, such as blood and cerebrospinal fluid (CSF) samples, for use by researchers studying early diagnosis and disease mechanisms. The Data and Statistics Core stores and maintains the Center’s comprehensive clinical data, and assists researchers with data management and statistical analyses. Many of our participants enroll in the Brain Donation Program of the Neuropathology Core, which provides brain tissue essential for laboratory research and for confirmation of changes observed clinically. The Education Core helps train new scientists and educates health care providers and the public about the results of our research on aging and AD. The NYU-ADC is unique as one of the only Centers with two additional core facilities: A Neuroimaging Core which focuses on brain imaging and obtaining CSF, providing researchers with cutting edge data from MRI and PET scans that support pioneering research on the early brain changes associated with cognitive decline; and a Psychosocial Core which collects data on the psychological and emotional consequences of caring for a relative with dementia and provides resources for the study of psychosocial interventions for patients and family members to reduce the impact of AD.

In addition to gaining a better understanding of the causes and improving the treatment of AD, the cutting-edge research affiliated with the ADC focuses on early diagnosis, early treatment and prevention. NYU scientists previously contributed to the understanding of mild cognitive impairment, which is now recognized as a very mild “prodromal” or pre-dementia clinical stage of AD. A major current research focus is on the transition from “normal” brain aging to the earliest pathology caused by AD, and on the development and testing of tests and treatments that may eventually lead to AD prevention. This research requires the participation of older adults willing to contribute their time so that future generations will not suffer from AD. Success in this important endeavor depends on the important partnership between the ADC and our valuable participants.
When Dementia is not Alzheimer’s

“Alzheimer’s disease (AD) is the most common cause of decline of memory and other cognitive abilities in older adults.”

However, roughly 4 out of every 10 individuals with cognitive decline may have a condition other than AD or may have a mixed dementia with features of AD and another disorder. Drs James Galvin and Stella Karantzoulis compared and contrasted the clinical and cognitive features of AD dementia syndrome and disorders that are most likely to present as “AD mimics” – Lewy body dementia (LBD), frontotemporal degeneration (FTD), vascular dementia (VaD) and depression in Table 1. It is important to understand the differences as treatments and responses to medications may differ. While episodic memory impairment is considered the hallmark AD, other major dementia syndromes also affect memory performance, although to different degrees.

Table 1: Common Causes of Cognitive Impairment in Older Adults

<table>
<thead>
<tr>
<th>Syndrome</th>
<th>Frequency</th>
<th>Typical Age</th>
<th>Family History</th>
<th>Early Clinical Features</th>
<th>Pathology</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alzheimer’s disease (AD)</td>
<td>60-65%</td>
<td>70-80's</td>
<td>Yes</td>
<td>Memory disorder</td>
<td>Senile plaques Neurofibrillary tangles</td>
</tr>
<tr>
<td>Lewy Body Dementia (LBD)</td>
<td>10-15%</td>
<td>60-70's</td>
<td>No</td>
<td>Parkinson-like features (slowness, tremor) Visual hallucinations Fluctuations (staring spells) Sleep disturbances</td>
<td>Lewy bodies Senile plaques (80%) Neurofibrillary tangles (rare)</td>
</tr>
<tr>
<td>Vascular Dementia (VaD)</td>
<td>10-15%</td>
<td>70-80's</td>
<td>No</td>
<td>Executive disorder Depression Neurological deficits (depending on location of stroke)</td>
<td>Strokes</td>
</tr>
<tr>
<td>Frontotemporal Degeneration (FTD)</td>
<td>5-10%</td>
<td>50-70's</td>
<td>Yes</td>
<td>Behavior and Personality changes Language disturbance</td>
<td>Neurofibrillary tangles Intraneuronal inclusions</td>
</tr>
<tr>
<td>Depression</td>
<td>n/a</td>
<td>n/a</td>
<td>Yes</td>
<td>Mood changes Memory disturbances that often change with mood</td>
<td>May have Senile plaques</td>
</tr>
</tbody>
</table>
When Dementia is not Alzheimer’s

While many individuals with LBD complain of memory decline, it tends to be one of retrieval of information rather than learning, so LBD patients respond better to clues and prompts. VaD and FTD tend to have preserved memory performance early in the course of the illness. Patients with depression often have poor performance on memory testing that tends to fluctuate with their mood and be worse towards the end of the day.

In addition to episodic memory, clinicians and researchers are able to use a variety of different tasks to help distinguish between different causes of dementia. Tests of semantic memory, executive function, procedural memory (knowledge of how to perform a task), working memory (mental processing of information), attention and visuospatial skills (hand-eye coordination) are often performed and can assist the clinician in determining the appropriate diagnosis.

The profiles presented in Table 2 are suggestive of different causes of impairment, but a complete evaluation (including a physical and neurological examination) is required to establish a diagnosis. A more detailed description of these findings can be found at http://www.expert-reviews.com/doi/pdf/10.1586/ern.11.155

<table>
<thead>
<tr>
<th>Cognitive Domain</th>
<th>Definition</th>
<th>AD</th>
<th>LBD</th>
<th>FTD</th>
<th>VaD</th>
<th>Depression</th>
</tr>
</thead>
<tbody>
<tr>
<td>Episodic Memory</td>
<td>Recall of newly learned information after a brief delay</td>
<td>+++</td>
<td>++</td>
<td>+/-</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Free recall</td>
<td>Recall of information without prompts</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Recognition</td>
<td>Recognition of previously presented information</td>
<td>+++</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Prompting</td>
<td>Using cues to prompt recall of information</td>
<td>x</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Intrusions</td>
<td>False recall of information not presented in the task.</td>
<td>+++</td>
<td>+++</td>
<td>+++</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Semantic memory</td>
<td>Knowledge of meaning of words, objects, actions, or ideas</td>
<td>++</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+/-</td>
</tr>
<tr>
<td>Procedural memory</td>
<td>Knowing how to perform a task</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Working memory</td>
<td>Mental manipulation of information</td>
<td>++</td>
<td>+++</td>
<td>+++</td>
<td>++</td>
<td>+/-</td>
</tr>
<tr>
<td>Insight</td>
<td>Awareness of personal cognitive, mood, and behavioral state</td>
<td>+++</td>
<td>+</td>
<td>+++</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Attention</td>
<td>Focusing and concentration on a task</td>
<td>++</td>
<td>+++</td>
<td>++</td>
<td>++</td>
<td>+++</td>
</tr>
<tr>
<td>Executive functions</td>
<td>Problem-solving tasks that require making choices or switching between different tasks</td>
<td>++</td>
<td>+++</td>
<td>+++</td>
<td>+++</td>
<td>++</td>
</tr>
<tr>
<td>Visuospatial skills</td>
<td>Hand-eye coordination, copying patterns or shapes</td>
<td>++</td>
<td>+++</td>
<td>-</td>
<td>+</td>
<td>+</td>
</tr>
</tbody>
</table>

+++ Early and severe impairment. ++ Moderate impairment. + Mild impairment. +/- Impairment in some studies but not others. - No significant impairment. x Not helpful. ✓ Helpful.
The Mediterranean diet has been associated with overall improved health, lower cardiovascular mortality, and decreased incidence of Alzheimer’s disease. A Mediterranean diet is high in fruits, vegetables, whole grains, beans, nuts, seeds, and unsaturated fat (olive oil), with low to moderate fish, poultry, dairy products, and little red meat. A diet high in omega-3 fatty acids and fish has had mixed results when evaluated for risk of dementia, but may have a benefit in cardiovascular health. Berries and other fruits and vegetables with dark pigments may contain antioxidant and anti-inflammatory properties, although how much of an effect this has on memory in humans is unclear.

Overall nutrition goals for older adults should include focusing on nutrient dense food. Whenever possible, nutrients should be obtained from food and not from a pill. Certain foods, such as cereal, are fortified with vitamins and minerals. There are no dietary supplements that are routinely recommended for the prevention of dementia. Supplements are not regulated by the FDA so advertising claims may not always be accurate. Remember that too much of certain supplements can be harmful so be sure your health care provider is aware of all supplements that you take. Common vitamin and mineral requirements for people older than 50 are listed in Table 1. Our best advice today is to choose healthier options whenever possible, focus on fresh not processed foods, and don’t forget about physical activity.

<table>
<thead>
<tr>
<th>Vitamin/mineral supplement</th>
<th>Daily requirement</th>
<th>Foods</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vitamin D</td>
<td>600 IU (age 50-70)</td>
<td>Fatty fish, fortified milk and cereal</td>
</tr>
<tr>
<td></td>
<td>800 IU (if older than 70)</td>
<td></td>
</tr>
<tr>
<td>Vitamin B6</td>
<td>1.7mg (men), 1.5mg (women)</td>
<td>Fortified cereal, whole grains, organ meats, fortified soy based meat substitutes</td>
</tr>
<tr>
<td>Vitamin B12</td>
<td>2.4 mcg</td>
<td>Meat, fish, poultry, milk, fortified cereals</td>
</tr>
<tr>
<td>Folate</td>
<td>400 mcg</td>
<td>Dark-green leafy vegetables, beans, peas, oranges, fortified flour and cereals</td>
</tr>
<tr>
<td>Calcium</td>
<td>1,200mg (women over 51)</td>
<td>Milk and milk products, tofu, dark-green leafy vegetables, soybeans, canned sardines and salmon with bones</td>
</tr>
<tr>
<td></td>
<td>1,000mg (men 51-70)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1,200mg (men 71 and older)</td>
<td></td>
</tr>
</tbody>
</table>

(National Institute on Aging, What’s on Your Plate? Smart Food Choices for Healthy Aging)

About the NYU Alzheimer’s Disease Center

The National Institute on Aging funds Alzheimer’s Disease Centers (ADCs) at major medical institutions across the United States. Researchers at these Centers are working to expand knowledge of brain function in healthy older people, identify ways we might lessen normal age-related declines in mental function, and deepen our understanding of Alzheimer’s disease and related dementias. We strive to improve diagnosis and care for people with Alzheimer’s disease (AD), while at the same time focusing on the long-term goal of finding a way to cure and prevent AD.

Areas of investigation range from the basic mechanisms of cognitive decline and AD to interventions aiming to help families cope with the effects of the disease. Center staff conduct basic, clinical, and behavioral research, and aid scientists and health care providers who are new to AD research. At NYU, the ADC has a strong focus on very early diagnosis and treatment, including research on healthy people who may be at risk for cognitive decline.

Our Center provides many services, including:

- Comprehensive clinical evaluations using the most advanced diagnostic methods
- Annual follow-up evaluations
- Brain Donation Program
- Opportunities to participate in research studies
- Information about cognitive decline and dementia
- Individual counseling, family counseling, and support groups
- Cognitive Remediation
- Special educational programs for participants and their families

ADC Website: www.med.nyu.edu/adc

Telephone: 212-263-8088
Research Opportunities

Longitudinal Study of Normal Aging, Mild Cognitive Impairment (MCI) and Alzheimer’s Disease
Participants receive a comprehensive diagnostic evaluation and are re-evaluated every year. The goal is to improve early diagnosis and better understand the clinical course and causes of age-related cognitive decline and AD.
For information, contact Thet Oo at 212-263-8088; thet.oo@nyumc.org

Multicultural Community Dementia Screening
The purpose of this study is to understand methods to best detect memory impairment in a multicultural community sample. Eligible participants include community dwelling older adults aged 65 or above, with and without memory complaints. Study participants will receive a comprehensive health screening and pencil and paper testing of memory and thinking abilities.
For information, contact Licet Valois at 646-501-4213, licet.valois@nyumc.org

Early Diagnosis and Imaging Studies

Defining Cognitive Phenotypes of Parkinson’s Disease
The purpose of this study is to understand methods to best detect and characterize memory impairment in older adults with Parkinson’s disease and understand the changes in the brain that cause memory problems. Older adults aged 60 or above, with and without memory complaints, will be recruited to receive a detailed clinical evaluation, pencil and paper testing of memory and thinking abilities, a magnetic resonance imaging (MRI) study of the brain and an electroencephalogram (EEG) to study brain activity.
For information, contact Crystal Guayara 646-501-4211; crystal.guayara@nyumc.org

Clinical Correlates of Longitudinal PET Changes in Alzheimer’s disease
The goal is to assess combining FDG-PET imaging (brain metabolism) with cerebrospinal fluid (CSF) biomarkers and PET amyloid imaging (using a tracer that binds to brain amyloid) in predicting cognitive decline. We are enrolling mild AD, MCI and normal subjects over age 20 who receive a comprehensive evaluation: neurological/physical exam, MRI and PET, memory testing, laboratory blood-work, EKG and lumbar puncture. Participants receive results and are compensated for their time and effort.
For information, contact Megan Cummings at 212-263-7795; megan.cummings@nyumc.org

Maternal history of AD Predisposes Children to Brain Hypometabolism
The goal is to determine whether young subjects (age 25-60) with and without a family history of AD show reductions in the brain’s metabolism of sugar and to measure a protein associated with AD, called amyloid, using PET imaging. In addition to PET imaging, all subjects will receive a comprehensive evaluation including a neurological and physical exam, MRI, memory testing, EKG, and laboratory blood-work.
For information, contact John Murray at 212-263-7795; John.Murray@nyumc.org

Imaging Neuroinflammation in Alzheimer’s Disease with [11C] Arachidonic Acid (AA) and PET
The goal is to validate a new inflammation PET imaging agent known as [11C] Arachidonic Acid (AA) in individuals with and without cognitive dysfunction. Inflammation is a key component of the pathological processes (amyloid beta plaque deposition, neurofibrillary tangles, neuronal loss, astrocytosis) that are found in patients with Alzheimer’s Disease (AD). An in vivo neuroimaging method to measure markers of neuroinflammation would represent a major advance in the understanding of the pathophysiology of AD and other dementing disorders. We are enrolling normal and dementia subjects over the age of 65 who will receive physical examinations, blood tests, neuropsychological evaluation, EKG, MRI; [11C] PIB, [18F]FDG, and [11C] AA PET scans. Participants are compensated for their time and effort.
For information, contact Ricardo Osorio at 212-263-3258; Ricardo.osorio@nyumc.org

MRI Progression Markers of Cognitive Decline in the Elderly
This project investigates the relationship between plasma amyloid beta protein levels and brain vascular response to CO2 (measured with MRI). Additional tests include brain structure measurement and CSF tau levels. Participants should have mild cognitive impairment (MCI), and will receive a comprehensive evaluation consisting of a neurological/physical examination, neuroimaging (MRI and ASL), memory testing, laboratory blood-work, ECG and lumbar puncture. Participants receive results and are compensated for their time and effort.
For information, contact Catherine Randall at 212-263-7563; catherine.randall@nyumc.org
Early Diagnosis and Imaging Studies

Biomarkers in Early Alzheimer’s Disease
This project builds upon our new work demonstrating the value of cerebrospinal fluid (CSF) and blood biomarkers. We combined these analyses with novel MRI technology which looks at cerebral blood flow, a possible mechanism-based marker for early Alzheimer’s disease. We are enrolling normal subjects, over the age of 50, with and without mild memory complaints, to receive a comprehensive evaluation: neurological/physical exam, MRI and memory testing, laboratory bloodwork, EKG and lumbar puncture. Participants are compensated for their time and effort.
For information, contact Catherine Randall at 212-263-7563; catherine.randall@nyumc.org

Are sleep disturbances a risk factor for Alzheimer’s disease?
Sleep is a complex behavioral state involved in brain restoration, body rhythms and memory consolidation. The term sleep-disordered breathing (SDB) is commonly used to describe the full range of breathing problems during sleep in which not enough air reaches the lungs (hypopnea and apnea). Advancing age is accompanied by physiological changes in respiratory functions during sleep, resulting in a prevalence of SDB of 30-80% in individuals aged ≥60 years, compared to less than 10% in people aged 40. In the elderly, SDB is for the most part asymptomatic and less dependent on obesity, snoring, and sleepiness than SDB at a younger age. No study has addressed appropriately the neurological impact of SDB in the elderly. Our plan is to use home-based monitoring of SDB to identify a sample of normal elderly subjects with SDB. All subjects will receive plasma measures of inflammation, clinical, neuropsychological, and neuroimaging (PIB and MRI) studies. Some participants will be invited to perform an in-lab sleep study (at the hospital). This novel study will provide additional evidence for the link between sleep respiratory changes in the elderly and Alzheimer’s disease (AD). Given the high prevalence of both SDB and AD, identifying a potential mechanistic association would be of the highest relevance in establishing new pathways for AD treatment.
For information, contact Ricardo Osorio at 212-263-3258; Ricardo.osorio@nyumc.org

Perfusion Studies of Medial Temporal Lobe
Researchers at New York University Medical Center are seeking volunteers to participate in a study using arterial spin labeling and magnetic resonance imaging (MRI). This non-invasive method enables assessment of brain blood flow and vascular reserve. The study examines the effect of aging on hippocampal (memory center) perfusion assessed with arterial spin labeling MRI. This is a new imaging technique that uses magnetized water to image blood flow. Researchers seek to recruit volunteers between the ages of 55 and 90 who have a diagnosis of Mild Cognitive Impairment (MCI) or Alzheimer’s disease. Your participation will involve an MRI examination that takes 30 minutes. You will receive a $100 compensation for your participation.
For information, contact Dr. Henry Rusinek, NYUSM, Radiology Department 550 First Ave, NY, NY 10016, tel. 212-263-6537; hr18@nyu.edu

Clinical Trials

For information on the following clinical trials, please contact Dana Pogorelec at 212-263-5708; Dana.pogorelec@nyumc.org or Giuseppe Agugliaro at 212-263-5845; Giuseppe.Agugliaro@nyumc.org

Clinical Phase II Study to Evaluate the Impact of Biomarkers of Resveratrol Treatment in Patients with Mild to Moderate Alzheimer’s disease.
The goal of this study is to assess the effect of a fixed dose treatment of resveratrol on putative biomarkers of Alzheimer’s disease and to assess the safety and tolerability of treatment with resveratrol over a 12-month period in participants with mild to moderate AD. The study will also assess the effect of resveratrol on rate of whole-brain and hippocampal atrophy, as well as regional cortical thinning, using volumetric magnetic resonance imaging (MRI). Enrollment is anticipated for May 2012, pending IRB approval.

Research Opportunities continue on next page
Research Opportunities

A phase 3 Multicenter, Randomized, Double-Blind, Placebo-Controlled, Parallel Group Efficacy and Safety Trial of Bapineuzumab (AAB-001, ELN115727) in Subjects With Mild to Moderate Alzheimer’s Disease who are Apolipoprotein E4 Non-Carriers.

The purpose of this study is to test if bapineuzumab is effective and safe in treating Alzheimer’s disease. It is designed to bind to a particular protein, beta amyloid protein, which accumulates in the brain and forms plaques, thought to be related to the progression of the disease. It is hoped that bapineuzumab will attach to the beta amyloid protein in the brain and help the body to remove it. Enrollment for this trial is anticipated for spring 2012.

Alzheimer’s Disease Neuroimaging Initiative 2 (ADNI2)

The overall goal of this project is to determine the relationships among the clinical, cognitive, imaging, genetic, and biomarker characteristics of the spectrum of Alzheimer’s disease (AD), as the pathology evolves from normal aging through very mild symptoms, to mild cognitive impairment (MCI), to dementia. ADNI2 is focused on establishing a broader understanding of biomarkers in a wider range of subjects in order to understand how these biomarkers can be used as both predictors and outcomes. We are enrolling participants who are cognitively healthy or diagnosed with mild cognitive impairment or Alzheimer’s disease.

We anticipate starting two additional studies for people with mild Alzheimer’s disease in summer 2012, pending IRB approval. One study is an infusion trial investigating the safety and tolerability of a compound while evaluating its ability to reduce levels of a protein found in CSF that is connected to Alzheimer’s disease. The other study will investigate the safety and efficacy of an orally administered beta secretase inhibitor. We are also looking for cognitively normal people who have mild complaints about their memory for an exciting study investigating whether certain FDA approved medications may be able to prevent mild cognitive impairment and Alzheimer’s disease.

Other ADC Studies and Programs

The Multicultural Program

The Multicultural Aging and Memory Assessment program provides free educational presentations and memory screenings at various community organizations and centers for health care providers, patients, family members, and others who may be interested in learning more about normal aging, memory problems, dementia, and Alzheimer’s disease. The program is committed to providing memory assessment and clinical trials research opportunities to an ethnically and socioeconomically-diverse patient population.

For information, contact Dorothy Patterson at 212-263-3201; dorothy.patterson@nyumc.org, or Milena Perez at 212-263-7651; milena.perez@nyumc.org (Spanish)

Early Stage Support Group

The center offers facilitated support group meetings to people in the early stages of AD. Studies suggest these groups may alleviate depression and social isolation, enhance coping skills, improve self esteem, and provide education and mental stimulation in a safe environment. Currently, these groups are being held on Thursday’s (12pm-1:30pm) and Fridays (2pm-3:30pm)

For information, contact Ursula Auclair at 212-263-2245; ursula.auclair@nyumc.org

Support for Caregivers

A peer facilitated support group for caregivers conveniently meets at the same time as the early stage AD support group held on Thursday’s from 12 to 1:30pm. In addition, a caregiver group meets on Mondays from 10am to 11:30am.

For information, contact Ursula Auclair, LCSW at 212-263-2245; ursula.auclair@nyumc.org, or Ronit Notkin, MSW at 212-263-2047; ronit.notkin@nyumc.org
New to ADC

Licet Valois LMSW, MPS
Liset was hired in February as a Social Worker and Community Outreach Coordinator. She has brought many useful skills and resources from her experience working at the New York Chapter of the Alzheimer’s Association.

Crystal Guayara, LMSW
Crystal began working in January as a Research Coordinator. She is excited to gain experience in the field of research, and hopes to expand her knowledge of statistics in research.

Erika Levine, M.S.
Erica began working in 2011 as a family counselor at the ADC. She meets with participants to conduct a psychosocial assessment, and to discuss any concerns they may have (memory related or otherwise).

Hiuyan Lau
Hiuyan is a postdoctoral fellow and part of the EBAD (Early Behavioral Alzheimer’s Detection) work group, working toward the development of preclinical cognitive markers of AD. She recently received the ADC pilot project award to develop this project.

The Memory Walk
The Walk to End Alzheimer’s, sponsored by the Alzheimer’s Association, is the nation’s largest event to raise awareness and funds for Alzheimer care, support, and research. On a national level, the money raised goes to fund AD research, public awareness, advocacy, and support for individuals and families affected by AD and related disorders. This event is also a great way for the ADC to recruit people for our research studies. Last year, 664 individuals joined the walk and we received 26 referrals for our program. The ADC staff also usually participates as a team, “Aging with Excellence”, and this year we hope you will be involved. The next walk is October 21, 2012 at 97th Street and Riverside Park, NYC.

Brain Donation Program
Brain donation is an important and generous gift, whether a person has Alzheimer’s disease or normal cognition. Examining brain tissue is the only method by which to make a definitive diagnosis of the cause of dementia. Family members play a crucial role by abiding by their loved one’s decision to donate and by making sure that the donation is received in a timely manner. The results can provide family members with information that may encourage them to monitor their own brain health. Studying brain tissue also provides scientists with valuable information in their quest to unravel the mysteries of the disorders that cause cognitive impairment. This offers the opportunity to improve treatment and ultimately find a much sought-after cure. There is currently a severe shortage of brain tissue available for dementia research.

If you or your family are interested in enrolling or want to know more about Brain Donation, Lynne Leung, our Coordinator, is available to help you. She can be reached at: (212) 263-5108 or lynne.leung@nyumc.org
Director: Steven Ferris

Executive Committee: Mony de Leon, James Galvin, Iryna Lobach, Karyn Marsh, Mary Mittelman, Ralph Nixon, Barry Reisberg, Melanie Shulman, Alok Vedvyas, Thomas Wisniewski

Administrative Core
- Steven Ferris, Core Leader
- Karyn Marsh, Executive Director
- Dorothy Patterson, Administrative Assistant

Neuroimaging Core
- Mony de Leon, Core Leader
- Henry Rusinek, Associate Core Leader
- Wai Hon Tsui, Associate Core Leader
- Yi Li, Neuroradiologist
- Lidia Glodzik, Research Scientist
- Pauline McHugh, Research Scientist
- Ricardo Osorio, Research Scientist
- Lisa Mosconi, PET Specialist
- Elizabeth Pirraglia, Statistician
- Magdalena Switalska, Core Coordinator
- Thomas Wisniewski, Neuropathologist

Multicultural Program
- Karyn Marsh, Director
- Dorothy Patterson, Coordinator
- Milena Perez, Coordinator
- Pamela Joseph, Research Clinician
- Ricardo Osorio, Research Scientist

Neuropathology Core
- Thomas Wisniewski, Core Leader
- Lynn Leung, Coordinator

Education Core
- James Galvin, Core Leader
- Yael Zweig, Associate Core Leader
- Licet Valois, Outreach Coordinator
- Crystal Guayara, Research Coordinator

Clinical Core
- Barry Reisberg, Core Leader
- Melanie Shulman, Associate Core Leader
- Thet Oo, Core Coordinator
- Milena Perez, Assistant Coordinator
- Isabel Monteiro, Research Clinician
- Pamela Joseph, Research Clinician
- Salman Anwar, Research Clinician
- Carol Torossian, Clinical Psychologist
- Alan Kluger, Senior Neuropsychologist
- Stella Karantzoulis, Clinical Neuropsychologist
- Amanda Behrens-Horrell, Psychometric Tester
- Ashita Gurnani, Psychometric Tester

Psychosocial Core
- Mary Mittelman, Core Leader
- Cynthia Epstein-Smith, Family Counselor
- Ursula Auclair, Family Counselor
- Ronit Notkin, Family Counselor
- Erika Levine, Family Counselor
- Olanta Barton Chandler, Research Coordinator

Data Management and Statistics Core
- Iryna Lobach, Core Leader
- Alok Vedvyas, Associate Core Leader, Data Manager
- Gaurav Vedvyas, Database Administrator
- Wai Tsui, Computer Scientist
- Eugene Laska, Senior Scientist
- Elizabeth Pirraglia, Statistician

Clinical Trials
- Dana Pogorelec
- Giuseppe Agugliaro
We continue to welcome your participation in Center activities and research programs. Federal support for medical research has been reduced in recent years. Thus, we increasingly depend on the generosity of our participants to help strengthen and expand our research and clinical programs, and greatly appreciate your financial support. Thank you.

Please make check payable to:
Aging and Dementia Research Center
and mail to:
Aging & Dementia Research Center
Attn: Dorothy Patterson
NYU School of Medicine
145 East 32nd Street, 2nd Floor
New York, NY 10016

If you are interested in receiving our ADC Newsletter and information about educational ADC events, please contact:
Crystal Guayara
Tel: 646-501-4211
E-mail: crystal.guayara@nyumc.org
subject line: “e-connect”

ALZHEIMER’S DISEASE CENTER
145 EAST 32ND STREET, 2ND FLOOR
NEW YORK, NY 10016