Hidradenitis Suppurativa Genetics Consortium

Lynn Petukhova, PhD

Assistant Professor Columbia University New York, NY, US

y @hs-genetics hs-genetics.com

Sister Society Scientific Meeting on HS World Congress of Dermatology

Suntec Singapore Convention & Exhibition Centre

Monday, July 3, 2023

We use *human genetic studies* of mutations and polymorphisms *as a starting point* to:

- discover HS disease mechanisms
- identify and prioritize drug targets
- improve the accuracy and utility of an HS diagnosis

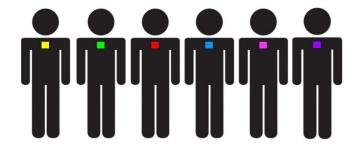
Our goal is to use human genetic studies to improve the clinical management of HS.

This objective requires *global collaboration*.

Jabbour et al., BJD, 2021

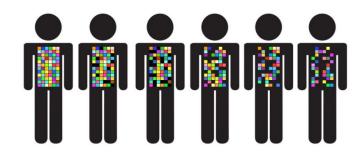
We use *human genetic studies* of mutations and polymorphisms as a starting point to:

- discover HS disease mechanisms
- identify and prioritize drug targets
- improve the accuracy and utility of an HS diagnosis

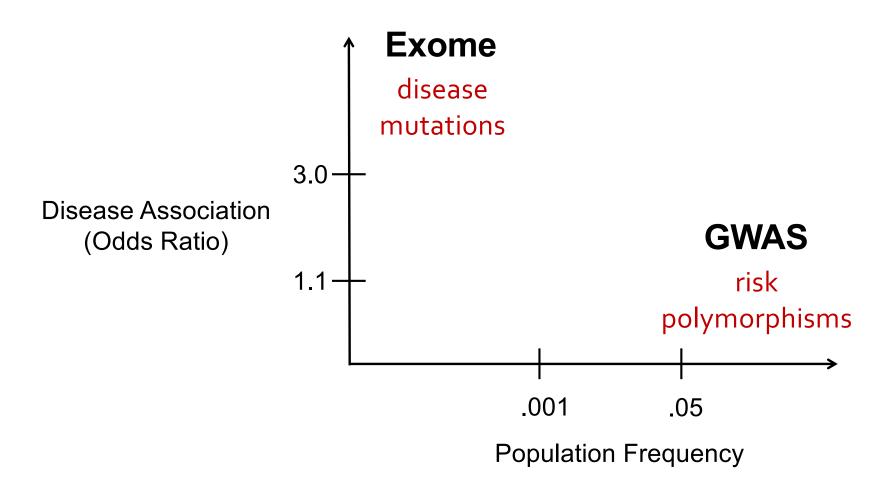

Our goal is to use human genetic studies to improve the clinical management of HS.

This objective requires *global collaboration*.

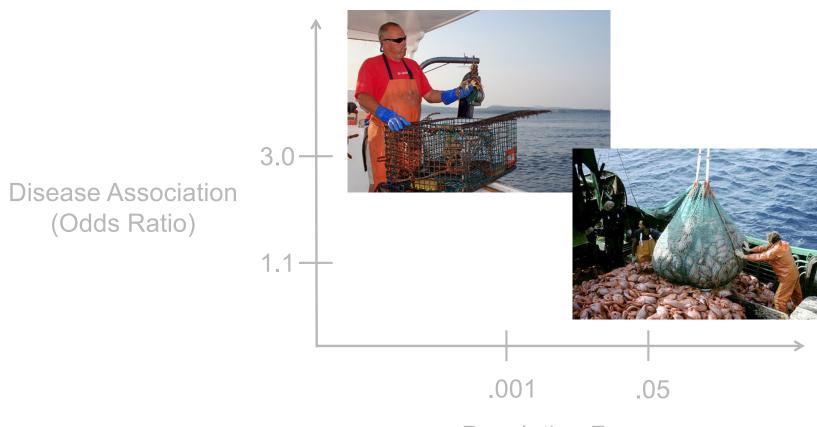
Jabbour et al., BJD, 2021



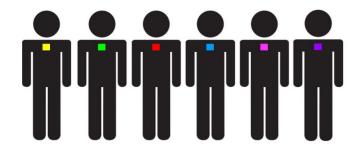
mutations


rare genetic variants strong correlations with disease

polymorphisms



common genetic variants
weak correlations with disease

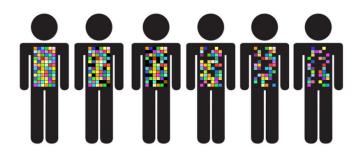


Genetic Architecture and Method

Population Frequency

mutations

rare genetic variants


strong correlations with disease

exome sequencing studies

single-gene causes of disease

principle parameter: phenotype

polymorphisms

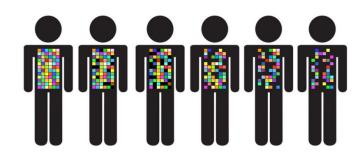
common genetic variants

weak correlations with disease
genome-wide association studies

polygenic risk

principle parameter: sample size

HS Genetics Consortium GWAS


Collaborations are fast, easy, flexible.

Standardized protocols

Accept data or samples for inclusion:

- GWAS summary statistics
- genotype data
- samples

polymorphisms

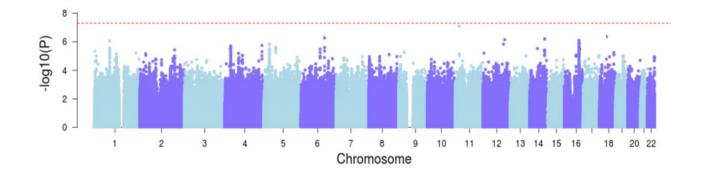
common genetic variants

weak correlations with disease
genome-wide association studies

polygenic risk

principle parameter: sample size

e.g., height GWAS: 5.4 Million people, 12,000 variants

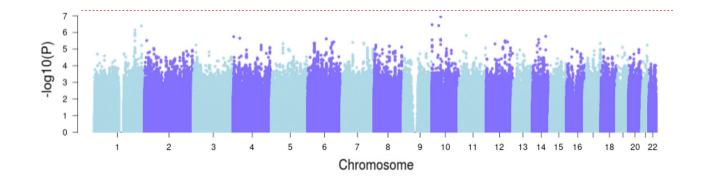

HS Genetics Consortium GWAS results

Genome-wide association study of hidradenitis suppurativa in a multiethnic cohort

Atlas Khan, M. Geoffrey Hayes, John Connolly, Frank Mentch, Patrick Sleiman, Hakon Hakonarson, Joshua Denny, Chunhua Wang, George Hripcsak, Krzysztof Kiryluk, Lynn Petukhova (USA)

Cohorts	Cases	Controls	Loci
1	593	86,084	0

HS Genetics Consortium GWAS results


12th EHSF Conference | Florence | February 8-10 2023

The Polygenic Architecture of HS revealed by a first meta-analysis GWAS

Atlas Khan, Errol P. Prens, Lam Tsoi, Johann E. Gudjonsson, Theodore G. Drivas, Marylyn D. Ritchie, Amir Hossein Sadian, Hákon Hákonarson, Nick Dand, Jonathan Barker, Michael Simpson, Jake Saklatvala, Brian Kirby,

The Hidradenitis Suppurativa Genetics Consortium, Kelsey R. van Straalen*, Lynn Petukhova*

Cohorts	Cases	Controls	Loci
5	1,626	210,675	0

HS Genetics Consortium GWAS results

DERMATOLOGY BEYOND BORDERS

Sister Society Scientific Meeting on Hidradenitis Suppurativa

The Polygenic Architecture of HS

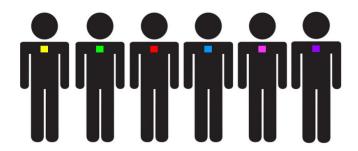
unpublished

Atlas Khan, Errol P. Prens, Lee Wheless, Adriana M. Hung, Maris Teder-Laving, Carole Ober, Lam Tsoi, Johann E. Gudjonsson, Theodore G. Drivas, Marylyn D. Ritchie, Amir Hossein Sadian, Hákon Hákonarson, Nick Dand, Jonathan Barker, Michael Simpson, Jake Saklatvala, Brian Kirby, The Hidradenitis Suppurativa Genetics Consortium, Kelsey R. van Straalen, Lynn Petukhova

	Cohorts		Ca	ases				Cor	ntro	s					_oc	i	
	7		4,3	308				987	7 ,20)6					3		
-log10(P)	8 6 4 2 0 1	3	4		2	1 7	8	9 1			3.	14	16	18	20	23	_
	Chromosome																

HS Genetics Consortium GWAS Future Directions

More cohorts, more samples, more collaborators.


Cohorts	Cases	Controls	Loci
10	6,000	1,200,000	?

Columbia University | Erasmus University | Vanderbilt University | University of Michigan | University of Pennsylvania | Children's Hospital of Philadelphia | Montefiore Hospital | NYU Langone | University of Chicago | Cardiff University | King's College London | University College Dublin | University Medical Center Groningen |

Bonn University | Charité – Berlin University of Medicine

mutations

rare genetic variants

strong correlations with disease

exome sequencing studies

single-gene causes of disease

principle parameter: phenotype

Collaborations are more involved

We work with deidentified data or samples

Validations are iterative

- Experimental validations
- Clinical validations

Analytic Strategies

- Diagnostic Analysis unpublished Resolving Etiological Heterogeneity
- Exome-wide Burden Testing

Etiological Heterogeneity Attenuates Power In Clinical Trials

People who share a diagnosis can have different biological causes of disease.

Etiological Heterogeneity Creates Inefficiency in Healthcare

Disease subtypes can have clinical implications for patients and family members.

PARP inhibitors

Analytic Strategies

- Diagnostic Analysis unpublished Resolving Etiological Heterogeneity
- Exome-wide Burden Testing

Analytic Strategies

Diagnostic Analysis unpublished
 Resolving Etiological Heterogeneity

HS Genetics Consortium Exome Studies

Cases

Hidradenitis Suppurativa Center

Albert Einstein College of Medicine

Dr. Steven Cohen

- +1,000 patients, ~700 receive on-going care and +500 have been consented for research.
- We sequenced 200 participants.
- Race:
- 26.9% Black/African-American
- 8.2% White
- 1.7% Asian
- 31.0% Other
- 28.6% Declined/Unavailable
- 24.5% Spanish/Hispanic/Latino
- 39.8% Not Spanish/Hispanic/Latino • Ethnicity:
 - 35.7% Declined/unavailable

Controls

Dr. David Goldstein

Over 40,000 exome sequences available as controls:

> 5,000 African Americans 5,100 Hispanics

Data generated with the same experimental and analytic pipelines as HS cases.

Used in +200 exome studies:

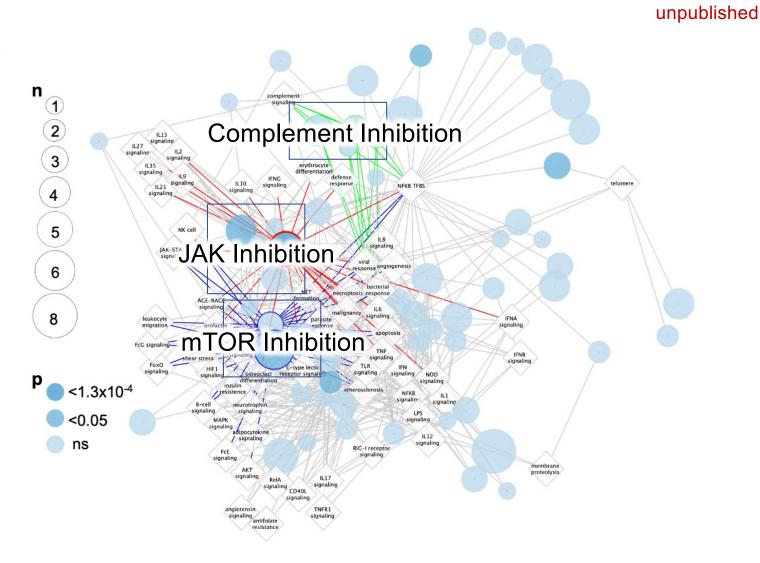
Groopman et al., NEJM, 2019 Zoghbi et al. PNAS, 2021 Erjavec et al., Nat. Comm., 2022 Kosmicki et al., AJHG, 2021 Marcoaliese et al., AJHG, 2018 Halvorsen, et al., Nat. Neuro., 2021 Dobbs et al., NEJM, 2015 Cirulli et al., Science, 2015

Additional publications:

https://www.igm.columbia.edu/gene-list

Results of Diagnostic Analysis and Burden Testing among Inborn Errors of Immunity

	Variant Count	Gene Count	
Variant is: in Mendelian gene with f_{max}	<.001 977	302	
and not benign in ClinVar	955	301	
and matches known MOI	296	84	
		Mode Of Inherita	nce
		2 82	


Can we use knowledge about the *molecular functions* of these 84 genes to understand *clinically relevant relationships*?

Diagnostic Analysis reveals heterogeneity

a set of participants with a mutation in the same gene

immune response pathway

pathway membership

Analytic Strategies

- Diagnostic Analysis unpublished Resolving Etiological Heterogeneity
- Exome-wide Burden Testing unpublished
 Animal model development is underway

Improving the clinical management of HS with human genetic studies.

Lynn Petukhova Kelsey van Straalen lynn.petukhova@columbia.edu k.vanstraalen@erasmusmc.nl

www.hs-genetics.com

Columbia University | Erasmus University | Vanderbilt University |
University of Michigan | University of Pennsylvania | Children's
Hospital of Philadelphia | Montefiore Hospital | NYU Langone |
University of Chicago | Cardiff University | King's College London |
University College Dublin | University Medical Center Groningen |
Bonn University | Charité – Berlin University of Medicine

Petukhova Lab Annelise Colvin Ghislaine Jumonville Julia Wright

Columbia Collaborators
Atlas Khan
David Goldstein
Joshua Milner

Montefiore
Steven Cohen

