Causal Discovery Methods Using Causal Probabilistic Networks

MEDINFO 2004,
T02: Machine Learning Methods for Decision Support and Discovery
Constantin F. Aliferis & Ioannis Tsamardinos
Discovery Systems Laboratory
Department of Biomedical Informatics
Vanderbilt University
Desire for Causal Knowledge

Diagnosis
- Knowing that “people with cancer often have yellow-stained fingers and feel fatigue”, diagnose lung cancer

Prevention
- Need to know that “Smoking causes lung cancer” to reduce the risk of cancer

Treatment
- Knowing that “the presence of protein X causes cancer, inactivate protein X, using medicine Y that causes X to be inactive”

Causal Knowledge NOT required

Causal Knowledge required
Importance of Causal Discovery Today

- What SNP combination causes what disease
- How genes and proteins are organized in complex causal regulatory networks
- How behaviour causes disease
- How genotype causes differences in response to treatment
- How the environment modifies or even supersedes the normal causal function of genes
What is Causality?

- Thousands of years old problem, still debated
- Operational Informal Definition:
 - Assume the existence of a mechanism M capable of setting values for a variable A. We say that A can be manipulated by M to take the desired values.
 - Variable A causes variable B, if: in a hypothetical randomized controlled experiment in which A is randomly manipulated via M (i.e., all possible values a_i of A are randomly assigned to A via M) we would observe in the sample limit that $P(B = b \mid A = a_i) \neq P(B = b \mid A = a_j)$ for some $i \neq j$.
- Definition is stochastic
- Problems: self-referencing, ignores time-dependence, variables that need to be co-manipulated, etc.
Causation and Association

- What is the relationship between the two?
- If A causes B, are A and B always associated?
- If A is associated with B are they always causes or effects of each other? (directly?, indirectly?, conditionally, unconditionally?)
Statistical Indistinguishability

- S1
- S2
- S3
RANDOMIZED CONTROLLED TRIALS

Association is still retained even after manipulating Smoking.
RCTs Are *not* always feasible!

- Unethical (smoking)
- Costly/Time consuming (gene manipulation, epidemiology)
- Impossible (astronomy)
- Extremely large number
Large-Scale Causal Discovery without RCTs?

- Heuristics to the rescue…
- What is a heuristic?
 - When the heuristic condition holds, *most probably* a causal association holds
Pitfalls of Causal Heuristics

‘If A is a robust and strong predictor of T then A is likely a cause of T’

- Example: Feature selection
- Example: Predictive Rules
- In the example: Tuberculosis is a strong predictor of Lung Cancer (when Haemoptysis is included as a predictor), but not causally associated with Lung Cancer
Pitfalls of Causal Heuristics

- ‘The closer A and T are in a causal sense, the stronger their correlation’ (localizes causality as well)
- Poor Fitness may be a stronger predictor (univariately) to lung cancer than either Occupation or Smoking individually; yet the latter predictors are causally “closer” to Lung Cancer
The Problem with Causal Discovery

- Causal heuristics are unreliable
- Causation is difficult to define
- RCTs are not always doable
- Major “causal knowledge” does not have RCT backing!
Formal Computational Causal Discovery from Observational Data

- Formal algorithms exist!
- Most are based on a graphical-probabilistic language called “Causal Probabilistic Networks (a.k.a. “Causal Bayesian Networks”)
- Well-characterized properties of
 - What types of causal relations they can learn
 - Under which conditions
 - What kind of errors they may make
Types of Causal Discovery Questions

- What will be the effect of a manipulation to the system?
- Is A causing B, B causing A, or neither?
- Is A causing B directly (no other observed variables interfere)?
- What is the smallest set of variables for optimally effective manipulation of A?
- Can we infer the presence of hidden confounder factors/variables?
A Formal Language for Representing Causality

- **Bayesian Networks**
 - Edges: probabilistic dependence
 - Markov Condition: A node N is independent from non-descendants given its parents
 - Probabilistic reasoning

Causal Bayesian Networks

- Edges represent **direct causal effects**
- Causal Markov Condition: A node N is independent from non-descendants given its direct causes
- Probabilistic reasoning + causal inferences
Causal Bayesian Networks

- There may be many (non-causal) BNs that capture the same distribution.
- All such BNs have the same edges (ignoring direction) same v-structures
- Statistically equivalent
Causal Bayesian Networks

- If there is a (faithful) Causal Bayesian Network that captures the data generation process, it has to have the same edges and same v-structures as any (faithful) Bayesian Network that is induced by the data.
 - We can infer what the direct causal relations are
 - We can infer some of the directions of the edges

Gene1 → Gene2

Gene1 ⇐ Gene2

Gene3
Faithfulness

- When d-separation \iff independence
- Intuitively, an open path between A and B means there is association between them in the data
- Previous discussion holds for faithful BNs only
- Faithful BN is a very large class of BNs
Learning Bayesian Networks: Constraint-Based Approach

- An edge $X \rightarrow Y$ (of unknown direction) exists, if and only if for all sets of nodes S, $\text{Dep}(X, Y \mid S)$ (allows discovery of the edges)
- Test all subsets. If $\text{Dep}(X,Y\mid s)$ holds, add the edge, otherwise do not.

If structure and for every set S that contains F, $\text{Dep}(X, Y \mid S)$, then
Learning Bayesian Networks: Constraint-Based Approach

- Tests of conditional dependences and independencies from the data
- Estimation using G^2 statistic, conditional mutual-information, etc.
- Infer structure and orientation from results of tests
- Based on the assumption these tests are accurate
- The larger the number of nodes in the conditioning set, the more samples are required to estimate the dependence, $\text{Ind}(A,B|C,D,E)$ more sample than $\text{Ind}(A,B|C,D)$
- For relatively sparse networks, we can d-separate two nodes conditioned on a couple of variables (sample requirements in the low hundreds)
Learning Bayesian Networks: Search-and-Score

- Score each possible structure
- Bayesian score: $P(\text{Structure} \mid \text{Data})$
- Search in the space of all possible BNs structures to find the one that maximizes score.
- Search space too large. Greedy or local search is typical.
- Greedy search: add, delete, or reverse the edge that increases the score the most.
The PC algorithm (Spirtes, Glymour, Scheines 1993)

- **Phase I: Edge detection**
 - Start with a fully connected undirected network
 - For each subset of variables of size \(n = 0, 1, \ldots \)
 - For each remaining edge \(A \rightarrow B \)
 - If there is a subset \(S \) of variables still connected to \(A \) or \(B \) of size \(n \) such \(\text{Ind}(A; B|S) \), remove edge \(A \rightarrow B \)

- **Phase II: Edge orientation**
 - For every possible \(V \)-structure \(A \rightarrow B \rightarrow C \) with \(A \rightarrow C \) missing
 - If \(\text{Dep}(A,C|B) \), orient \(A \rightarrow B \leftarrow C \)
 - While no more orientations possible
 - If \(A \rightarrow B \rightarrow C \) and \(A \rightarrow C \) missing, orient it as \(A \rightarrow B \rightarrow C \)
 - If there is a path \(A \rightarrow \ldots \rightarrow B \) orient the edge \(A \rightarrow B \) as \(A \rightarrow B \)
Trace Example of the PC

Start with a fully connected undirected network.
Trace Example of the PC

For subsets of size 0
- For each remaining edge \(A - B \)
 - If there is a subset \(S \) of variables still connected to \(A \) or \(B \) of size \(n \) such \(\text{Ind}(A; B/ S) \), remove edge \(A - B \)

For subsets of size 0
- For each remaining edge \(A - B \)
 - If there is a subset \(S \) of variables still connected to \(A \) or \(B \) of size \(n \) such \(\text{Ind}(A; B/ S) \), remove edge \(A - B \)

No independencies discovered
Trace Example of the PC

True Graph

Current candidate graph

For subsets of size 1
 • For each remaining edge $A \rightarrow B$
 • If there is a subset S of variables still connected to A or B of size n such $\text{Ind}(A; B| S)$, remove edge $A \rightarrow B$

$\text{Ind}(A, C|B)$
$\text{Ind}(A, E|B)$
$\text{Ind}(A, D|B)$
$\text{Ind}(C, D|B)$
Trace Example of the PC

True Graph

Current candidate graph

For subsets of size 2
• For each remaining edge $A - B$
 • If there is a subset S of variables still connected to A or B of size n such $\text{Ind}(A; B \mid S)$, remove edge $A - B$

$\text{Ind}(B,E \mid C,D)$
Phase II: Edge orientation

- For every possible V-structure: $A \rightarrow B \rightarrow C$ with $A \rightarrow C$ missing
 - If $\text{Dep}(A,C|B)$, orient $A \rightarrow B \leftarrow C$
Phase II: Edge orientation

For every possible V-structure: $A - B - D$ with $A - D$ missing

- If $\text{Dep}(A,D|B)$, orient $A \rightarrow B \leftarrow D$
Phase II: Edge orientation
• For every possible V-structure $C \rightarrow B \rightarrow D$ with $C \rightarrow D$ missing
 • If $\text{Dep}(C,D|B)$, orient $C \rightarrow B \leftarrow D$
Phase II: Edge orientation
• For every possible V-structure C – E – D with C – D missing
 • If $\text{Dep}(C,D|E)$, orient $C \rightarrow E \leftarrow D$

Condition holds
Trace Example of the PC

True Graph

A → B → C → E → D

Current candidate graph

A → B → C → D → E

Final output!
Min-Max Hill Climbing algorithm

- Brown, Tsamardinos, Aliferis, MedInfo 2004
- Based on the same ideas as PC and uses tests of conditional independence
- Uses different search strategy to identify interesting independence relations
- Similar quality results as PC but scales up to tens of thousands of variables (PC can only handle a couple of hundred variables)
Local Causal Discovery

- Max-Min Parents and Children: returns the parents and children of a target variable
- Tsamardinos, Aliferis, Statnikov KDD 2003
- Scales-up to tens of thousands of variables
Local Causal Discovery

- Max-Min Markov Blanket: returns the parents and children of a target variable
- Scales-up to tens of thousands of variables
- HITON (Aliferis, Tsamardinos, Statnikov AMIA 2003) close variant: different heuristic+wrapping with a classifier to optimize for variable selection tasks
Local Causal Discovery - Different Flavor

- Mani & Cooper 2000, 2001, Silverstein, Brin, Motwani, Ullman

- **Rule 1**: A, B, C pairwise dependent, Ind(A, C | B), A has no causes within the observed variables (e.g. temperature in a gene expression experiment), then
 - A → ... → B → ... → C

- **Rule 2**: Dep(A, B | ∅), Dep(A, C | ∅), Ind(B, C | ∅), Dep(B, C | A), then
 - B → ... → A ← ... ← C

- Discovers a coarser causal model (ancestor relations and indirect causality)
FCI – Causal Discovery with Hidden Confounders

\[\text{Ind}(SE, LC | \emptyset) \]
\[\text{Dep}(SE, LC | SM) \]
\[\text{Ind}(SM, OC | \emptyset) \]
\[\text{Dep}(SM, OC | LC) \]

The only consistent model with all tests is one that has a hidden confounder.
Other Causal Discovery Algorithms

- Large body of work in Bayesian (or other) search and score methods; still similar set of assumptions (Neapolitan 2003)
- Learning with linear Structural Equation Models in systems in static equilibria (allows feedback loops) (Richardson, Spirtes 1999)
- Learning in the presence of selection bias (Cooper 1995)
- Learning from mixtures of experimental and observational data (Cooper, Yoo, 1999)
Conclusions

- It is possible to perform causal discovery from observational data without Randomized Controlled Trials!
- Heuristic methods are typically used instead of formal causal discovery methods; their properties and their relative efficacy are unknown
- Causal discovery algorithms also make assumptions but have well-characterized properties
- There is a plethora of different algorithms with different properties and assumptions for causal discovery
- There is still plenty of work to be done
Suggested Further Reading

- Neapolitan, Learning Bayesian Networks, Prentice Hall, 2003
- Ed. Glymour, Cooper, Computation, Causation, and Discovery, AAAI Press/MIT Press, 1999
- Spirtes, Glymour, Scheines, Causation, Prediction, Search, MIT Press 2000