At NYU, neuroscience graduate education provides integrated training that encompasses molecular, cellular, developmental, systems, cognitive, behavioral, and computational approaches to address the most important questions in the field. Doctoral training in neuroscience at NYU builds on the diversity and strength of research throughout many interrelated departments and multiple campuses, especially among those within the Center for Neural Science, the Neuroscience Institute, and NYU Shanghai.

Students receive a comprehensive, interdisciplinary neuroscience education, and they have the opportunity to sample different research experiences before they commit to a topic area and laboratory. Training strongly emphasizes research at the highest level and faculty are dedicated to mentoring and career development throughout graduate school. Students also benefit directly from an interactive, collegial community and become active participants in shaping the rich, intellectual environment that complements their formal training.

This brochure will introduce you to NYU’s wide array of cutting-edge neuroscience research, our faculty and graduate students, and their most recent and exciting discoveries.
Key Components and Timeline of Study

Year

1
- 2-3 Lab Rotations
- Core Neuroscience Courses
- Track-Specialized Courses

2
- Select Thesis Advisor & Committee
- “First Year” Talk
- Thesis Research
- Qualifying Exams

3
- Advanced Elective Courses
- Thesis Research continues
- Annual Committee Meeting

4
- “Third Year” Talk
- Thesis Research continues
- Annual Committee Meeting

5
- Dissertation & Oral Defense
- PhD in Neuroscience

DC 12/14/2020
Cell and Molecular Biology of Neurons and Glia

Researchers at NYU use cutting edge techniques, including two-photon microscopy, in vivo labeling of individual molecules and neurons, and RNA sequencing analysis, to investigate the electrical, biochemical, and genetic properties that underlie the function of the healthy and diseased brain at the cellular and molecular levels.

Akt inhibition blocks myelin formation in vitro without affecting Krox20 levels (Salzer lab)

Faculty

Cristina Alberini	Jorge Ghiso	Niels Ringstad
Chiye Aoki | Stephen Ginsberg | James Salzer
Justin Blau | Eric Klann | Dan Sanes
Richard Bonneau | Joseph LeDoux | Neville Sanjana
Steven Burden | Efrat Levy | Helen Scharfman
Thomas Carew | Shane Liddelow | Einar Sigurdsson
Kenneth Carr | Dayu Lin | Nicholas Stavropoulos
Adam Carter | Arjun Masurkar | Greg Suh
Aravinda Chakravarti | Paul Mathews | Daniel Tranchina
Moses Chao | Ralph Nixon | Dirk Trauner
Mitchell Chesler | Simon Peron | Nicolas Tritsch
Jeremy Dasen | Dimitris Placantonakis | Richard Tsien
Claude Desplan | Margaret Rice | Jing Wang
Andre Fenton | | Thomas Wisniewski
Cell and Molecular Biology of Neurons and Glia

Two-photon image of somatostatin interneuron during whole-cell recording (Carter lab)
Motor axon projections in control (top) and PbxCMNΔ (bottom) mice (Dasen lab)

Select Recent Publications

Physiology of Cells and Synapses

Behavior arises as a result of cellular and synaptic activity. NYU neuroscientists are at the forefront of this research aiming to elucidate the underlying neural circuitry, using a wide array of technologies.

PV and SOM interneurons in the infralimbic PFC. (A) Labeling of PV interneurons in the PFC of a PV-Cre mouse. (B) Similar to (A) for SOM interneurons in the PFC of a SOM-Cre mouse. (C) Two-photon images of PV and SOM interneurons. (D) Response to 200 pA and -50 pA current injections (Carter lab)

Faculty

Chiye Aoki
Jayeeta Basu
Steven Burden
Gyorgy Buzsaki
Thomas Carew
Adam Carter
Moses Chao
Mitchell Chesler
Dmitri Chklovskii
Christine Constantinople
Robert Froemke
Eric Lang
Shane Liddelow
Michael Long
Katherine Nagel
Simon Peron
Alex Reyes
Margaret Rice
Dmitry Rinberg
Niels Ringstad
John Rinzel
Bernardo Rudy
Dan Sanes
James Salzer
Helen Scharfman
David Schoppik
Shy Shoham
Nicolas Tritsch
Richard Tsien
Digital reconstruction of an in vivo recorded and labeled L5/6 fanning-out Martinotti interneuron. Histogram shows average axonal length color coded by layer of reconstructed cells (Rudy lab)

Select Recent Publications

Sensation, Perception, and Movement

Neuroscientists across NYU are working to understand the processes of sensing, interpreting, and acting on stimuli in the environment. Using cutting-edge techniques and novel tools, our scientists ask how we decode odors, learn to balance, perceive texture and faces, and learn vocalizations.

Faculty

Dora Angelaki
Jayeeta Basu
Gyorgy Buzsaki
Thomas Carew
Marisa Carrasco
F. Xavier Castellanos
Christine Constantinople
Jeremy Dasen
Claude Desplan
Zoe (Xiaowei) Dong
Jon Freeman
Robert Froemke
Esther Gardner
Davi Geiger
Marc Gershow
Michael Hawken
Biyu He
David Heeger
Roozbeh Kiani
Lynne Kiorpes
Michael Landy
Li Li
Michael Long
Wei Ji Ma
Larry Maloney

Arjun Masurkar
Anthony Movshon
Katherine Nagel
Denis Pelli
Simon Peron
Bijan Pesaran
David Poeppel
Alex Reyes
Margaret Rice
Dmitry Rinberg
Bernardo Rudy
Dan Sanes
David Schoppik
David Schneider
Robert Shapley
Shy Shoham
Eero Simoncelli
Greg Suh
Regina Sullivan
Xing Tian
Daniel Tranchina
Jing Wang
Donald Wilson
Jonathan Winawer
Yongdi Zhou
Sensation, Perception, and Movement

Visualizations of neural population responses in V1 and V2 to visual texture stimuli (Movshon and Simoncelli labs).

Select Recent Publications

Executive Function and Cognition

The brain gives rise to our thoughts, decisions, and sense of self. At levels of analysis ranging from molecules to humans, researchers at NYU reveal the neural substrates that underlie higher order mental processes such as consciousness, judgment and decision making, attention, working memory, inhibitory control, and cognitive flexibility.

Using tDCS to create a computational model of the neural underpinnings of conscious movement intention (He lab)

Faculty

Cristina Alberini Jeffrey Erlich Li Li
Dora Angelaki Andre Fenton Sukbin Lim
Jayeeta Basu Jon Freeman Larry Maloney
Gyorgy Buzsaki Paul Glimcher Denis Pelli
Xinying Cai Todd Gureckis Bijan Pesaran
Marisa Carrasco Catherine Hartley David Poeppel
F. Xavier Castellanos Biyu He David Schneider
Christine Constantinople Wei Ji Ma Xing Tian
Clayton Curtis Roozbeh Kiani Xiao-Jing Wang
Zoe (Xiaowei) Dong Michael Landy Jonathan Winawer
Decreased grey matter volume (GMV) in the right posterior parietal cortex (rPPC) is associated with increased age and decreased risk tolerance (top). When controlling for age, only decreased GMV in the rPPC modulates risk preference (bottom; Glimcher lab)

Select Recent Publications

Glimcher lab (2018). The computational form of craving is a selective multiplication of economic value. PNAS.

Learning, Memory, and Development

Neuroplasticity can account for much of learning, memory and development. Neuroscientists at NYU are studying how we learn and remember information over time using a myriad of approaches, including electrophysiology, imaging, and genetic sequencing and manipulations.

Intracellular recording from serotonergic (5HT) neurons that respond to sensitizing stimuli that induce memory formation (Carew lab)

Faculty

Karen Adolph
Cristina Alberini
Dora Angelaki
Chiye Aoki
Jayeeta Basu
Gyorgy Buzsaki
Thomas Carew
Kenneth Carr
Adam Carter
F. Xavier Castellanos
Moses Chao
Clayton Curtis
Jeremy Dasen
Claude Desplan
Zoe (Xiaowei) Dong
Jeffrey Erlich
Andre Fenton
Robert Froemke
Catherine Hartley
Paul Glimcher
Todd Gureckis
Lynne Kiorpes
Eric Klann
Joseph LeDoux
Sukbin Lim
Michael Long
Wei Ji Ma
Arjun Masurkar
Anthony Movshon
Dan Sanes
Cristina Savin
David Schoppik
Greg Suh
Regina Sullivan
Wendy Suzuki
Xing Tian
Richard Tsien
Xiao-Jing Wang
Donald Wilson
Jonathan Winawer
Yongdi Zhou
Learning, Memory, and Development

Depth profile of theta-nested gamma oscillations (Buzsaki lab)

Select Recent Publications

Emotions and Behavioral States

Emotions are complex physiological and psychological states that drive many of our actions and behaviors. Researchers at NYU investigate how emotions arise and impact behavior using many different approaches, including genetic engineering, tracing, and functional magnetic resonance imaging techniques.

fMRI BOLD responses during late Avoidance/Extinction (Hartley lab).

Faculty

Cristina Alberini Jeffrey Erlich Katherine Nagel
David Amodio Andre Fenton Margaret Rice
Chiye Aoki Jon Freeman Helen Scharfman
Jayeeta Basu Robert Froemke Nicholas Stavropoulos
Justin Blau Paul Glimcher Greg Suh
Gyorgy Buzsaki Catherine Hartley Regina Sullivan
Kenneth Carr Biyu He Wendy Suzuki
Marisa Carrasco Eric Klann Nicolas Tritsch
Adam Carter Joseph LeDoux Jing Wang
F. Xavier Castellanos Dayu Lin Donald Wilson
Emotions and Behavioral States

Esr1+ neurons in the VMHvl region of the hypothalamus are preferentially activated during (A) fighting and (B) mating in female mice. (Lin lab).

Select Recent Publications

Disorders

In addition to normal behavior, it is important to understand disorders of the nervous systems, such as neurodegenerative and neurodevelopmental disorders. Researchers at NYU are investigating these questions at various systems levels and with different models.

Spine density is decreased in select regions of the dendritic tree in Lrp4 mutant mice, a model of neuromuscular disorders (Burden lab)

Faculty

<table>
<thead>
<tr>
<th>Chiy Aoki</th>
<th>David Heeger</th>
<th>James Salzer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Steven Burden</td>
<td>Lynne Kiorpes</td>
<td>Neville Sanjana</td>
</tr>
<tr>
<td>Gyorgy Buzsaki</td>
<td>Eric Klann</td>
<td>Helen Scharfman</td>
</tr>
<tr>
<td>Kenneth Carr</td>
<td>Joseph LeDoux</td>
<td>Einar Sigurdsson</td>
</tr>
<tr>
<td>F. Xavier Castellanos</td>
<td>Efrat Levy</td>
<td>Nicholas Stavropoulos</td>
</tr>
<tr>
<td>Moses Chao</td>
<td>Li Li</td>
<td>Regina Sullivan</td>
</tr>
<tr>
<td>Aravinda Chakravarti</td>
<td>Shane Liddelow</td>
<td>Dirk Trauner</td>
</tr>
<tr>
<td>Andre Fenton</td>
<td>Arjun Masurkar</td>
<td>Nicolas Tritsch</td>
</tr>
<tr>
<td>Jorge Ghiso</td>
<td>Paul Mathews</td>
<td>Richard Tsien</td>
</tr>
<tr>
<td>Stephen Ginsberg</td>
<td>Ralph Nixon</td>
<td>Daniel Turnbull</td>
</tr>
<tr>
<td>Paul Glimcher</td>
<td>Dimitris Placantonakis</td>
<td>Jing Wang</td>
</tr>
<tr>
<td>Donald Goff</td>
<td>Margaret Rice</td>
<td>Donald Wilson</td>
</tr>
<tr>
<td></td>
<td>Niels Ringstad</td>
<td>Thomas Wisniewski</td>
</tr>
</tbody>
</table>
Disorders

Phosphorylated ribosomal S6 protein (red) in the hippocampus of fragile X syndrome model mice (Klann lab)

Select Recent Publications

Ringstad lab (2018). Antagonistic regulation of trafficking to Caenorhabditis elegans sensory cilia by a retinal degeneration 3 homolog and retromer. PNAS.
Computation

Computational modeling can help us to understand and make predictions about molecules, cells, circuits, systems, cognition, and behavior. Often working in parallel with experimentalists, computational neuroscientists continually refine their models and make testable predictions about how the brain works.

Biologically plausible network for blind source separation (Chklovskii lab)

Faculty

<table>
<thead>
<tr>
<th>Biographically plausible network for blind source separation (Chklovskii lab)</th>
<th>Dora Angelaki</th>
<th>David Heeger</th>
<th>Dmitry Rinberg</th>
</tr>
</thead>
<tbody>
<tr>
<td>Richard Bonneau</td>
<td>Yann LeCun</td>
<td>John Rinzel</td>
<td></td>
</tr>
<tr>
<td>Gyorgy Buzsaki</td>
<td>Sukbin Lim</td>
<td>Cristina Savin</td>
<td></td>
</tr>
<tr>
<td>Dmitri Chklovskii</td>
<td>Michael Long</td>
<td>David Schoppik</td>
<td></td>
</tr>
<tr>
<td>Christine Constantinople</td>
<td>Wei Ji Ma</td>
<td>Robert Shapley</td>
<td></td>
</tr>
<tr>
<td>Andre Fenton</td>
<td>Anthony Movshon</td>
<td>Michael Shelley</td>
<td></td>
</tr>
<tr>
<td>Davi Geiger</td>
<td>Katherine Nagel</td>
<td>Eero Simoncelli</td>
<td></td>
</tr>
<tr>
<td>Paul Glimcher</td>
<td>Bijan Pesaran</td>
<td>Daniel Tranchina</td>
<td></td>
</tr>
<tr>
<td>Todd Gureckis</td>
<td>Charles Peskin</td>
<td>Xiao-Jing Wang</td>
<td></td>
</tr>
<tr>
<td>Biyu He</td>
<td>Alex Reyes</td>
<td>Lai-Sang Young</td>
<td></td>
</tr>
</tbody>
</table>
Distinguishing four theoretical model network mechanisms for population coding and dynamics.
A) Example activity for one neural unit. (B) Correlation of population state (sensory is orange, memory purple) over time. (C) Delay-activity state-specific trajectories (Wang lab)

Select Recent publications

The NYU Neuroscience Community

The NYU Neuroscience community comes together for a wealth of scientific events that encourage interdisciplinary, cross-campus interactions to ensure a stimulating environment for graduate training.

Weekly **Joint Neuroscience Colloquia** are a fundamental component of the community, featuring esteemed neuroscientists from around the world. Students have the opportunity to informally meet with invited speakers.

The **Swartz Seminar Series** promotes the theoretical neuroscience community at NYU by inviting distinguished computational and theoretical neuroscientists to speak about their research.

Annual Neuroscience Retreats bring together faculty and students for a multi-day scientific meeting focused on fostering new collaborations and showcasing the cutting edge work of the neuroscience community.

Other events like **Weekly Group Meeting and Fellows’ Seminars** highlight our students’ research in progress, giving them an opportunity to present their research and receive valuable input.

In the **Growing up in Science** series faculty members share their stories about becoming and being scientists to foster an open dialogue about the often unspoken human factors in academia.
The NYU Neuroscience Community

NOGN: The Neuroscience Outreach Group at NYU brings the brain to the city by visiting classrooms, hosting public events, and partnering with local educational and cultural institutions.

NeuWrite integrates the Scientific and Science Communication communities through events, talks, and a monthly workshop in order to create excellent and compelling science journalism and art.

The **NYU Biotech Association** hosts events that focus on applications of biomedical science in industry, business, law, and translational research.

The **NYU STEP** program is an NIH-funded series that helps graduate student and postdoc trainees identify career goals and provides resources needed to pursue them.

ScAAN: Scientist Action and Advocacy Network is a NYU-based group of scientists that partners with organizations that are creating positive social change.
A Selection of Current NYU Neuroscience Students

Rachel Kim (BA, Barnard College) is a 2nd year student in the Liddelow lab studying molecular mechanisms of A2 reactive astrocyte induction and function.

Nikhil Parthasarathy (BS/MS, Stanford University) is a 2nd year student in the Simoncelli lab using computation and theory to build better models of mid-level visual processing.

Billy Broderick (BA, Oberlin College) is a 3rd year student in the Winawer and Simoncelli labs using fMRI and computation to study low-level vision in the human brain.

Margot Elmaleh (BS, Brown University) is a 3rd year graduate student in the Long Lab investigating song production circuitry during sleep.

Janelle Miranda-Fajardo (BS, UPR - Rio Piedras) is a 4th year student in the Alberini Lab investigating the mechanisms of memory formation during early development.

Andrew Matheson (BSc, McGill University) is a 4th year student in the Nagel Lab and is investigating the neural circuits underlying olfactory navigation in Drosophila.

Daniel Levenstein (MS, Cornell University) is a 5th year student in the Buszaki and Rinzel Labs creating dynamical models of how neural activity is coordinated during sleep.

Katie Eyring (BA, Wellesley College) is a 5th year graduate student working in the Tsien Lab on the mechanisms and functions of short-term plasticity.
NYU Neuroscience Students By the Numbers

2018 Incoming Class

61% female

22% international

Graduate Student Publications

1.4 first author papers

3.0 publications

12% students who publish rotation work

Alumni Placement

Other

Science

Academia

Medicine

Training Program Stats

116 training faculty

121 students

38 current students with fellowships

5.5 years to degree

DC 12/14/2020
A Selection of NYU Neuroscience Alumni

Emre Aksay, PhD ‘01, is an Associate Professor at Weill Cornell, and he investigates the molecular, cellular, and circuit mechanisms of temporal integration in neurons.

Nicole Rust, PhD ’04, is an Associate Professor at the University of Pennsylvania studying how the brain stores visual memories and recognizes objects.

Jonathan Pillow, PhD ‘05, is an Associate Professor in Psychology and the Princeton Neuroscience Institute at Princeton University. His research focuses on neural coding and statistical analysis methods for large neural datasets.

Alexander Jaworski, PhD ‘06, is an Assistant Professor at Brown University studying how the complex wiring pattern of the brain is established during embryonic development.

Mehrdad Jazayeri, PhD ‘07, is an Assistant Professor at MIT. He is interested in the neural bases of complex behaviors such as flexible timing and sensorimotor integration.

Bianca Jones Marlin, PhD ’14, is a postdoctoral fellow with Richard Axel at Columbia University, where she investigates the role of cognitive flexibility in innate behaviors.

Thu Huynh, PhD ’15 is a postdoctoral fellow with Conor Liston at Weill Cornell Medicine investigating prefrontal microcircuit mechanisms underlying extinction memory formation using novel methods of calcium imaging.

Georg Kosche, PhD ‘16, is a postdoctoral fellow with Botand Roska at the Friedrich Miescher Institute investigating the structure and function of neural circuits.
A Selection of NYU Neuroscience Alumni
NYU and Living in NYC

Neuroscience faculty can be found in more than a dozen academic departments at NYU. Labs are located on both the NYU Grossman School of Medicine campus and the Washington Square campus (see the map below) as well as at the nearby Nathan S. Kline Institute for Psychiatric Research. Free shuttles provide easy access to both campuses and other areas of the city. NYC public transportation is also very convenient, and Citibikes are easy to find on both campuses.

Labs working in all areas of neuroscience are well-equipped with state-of-the-art research facilities that support basic, translational, and clinical neuroscience.
NYU and Living in NYC

Students receive full support throughout their tenure in graduate school so that they can devote themselves full time to their studies. Support comes from the University, a number of training grants, as well as research grants. The program also trains students in the art of grant writing, and many successfully secure fellowships from the NIH, NSF, and other sources.

To assist students, NYU provides housing benefits that offset the cost of living in New York City. Neuroscience students have access to subsidized apartments, either through the School of Medicine’s Housing Services or through the MacCracken program.
Apply to NYU Neuroscience

Applications for the Doctoral Program in Neural Science (based in the Graduate School of Arts and Science’s Center for Neural Science, and NYU Shanghai’s Institute of Brain and Cognitive Science) and Graduate Program in Neuroscience & Physiology (based in the School of Medicine’s Vilcek Institute) are jointly reviewed by a single admissions committee. To learn more about NYU Neuroscience and to access our application, visit us online.

To apply, visit neuroscience.nyu.edu.

The application deadline for Fall 2021 is December 1, 2021.

Contact Us

Graduate Program Directors
Niels Ringstad
niels.ringstad@nyulangone.org

Michael Hawken
michael.hawken@nyu.edu

Academic Administrators
Heather McKellar
heather.mckellar@nyulangone.org

Jess Holman
jess.holman@nyu.edu