
Homologous recombination (HR) occurs in all life 
forms. HR studies were initially the domain of a few 
aficionados who had a desire to understand how genetic 
information is transferred and exchanged between 
chromosomes. The isolation and characterization of 
relevant mutants in Escherichia coli1, and later in the 
budding yeast Saccharomyces cerevisiae (see below), 
uncovered the role of HR in DNA repair and led to the 
recognition that HR prevents the demise of damaged 
DNA replication forks, orchestrates the segregation of 
homologous chromosomes in meiosis I and functions in 
telomere maintenance2–5 (FIG. 1). Several cancer-prone 
genetic diseases, including Bloom’s syndrome and 
Fanconi anaemia, are associated with HR dysfunction or 
deficiency6–8. Furthermore, HR impairment is probably 
the underlying cause of breast, ovarian and other cancers 
in individuals who harbour mutations in the BRCA1 
and BRCA2 genes9,10. Given the link to cancer, research 
on the mechanism and regulation of HR has received 
increasing attention.

Programmed DNA double-strand breaks (DSBs) 
that occur in meiosis and in processes such as mating-
type switching in S. cerevisiae are strong inducers of HR. 
Recombination also occurs in response to unscheduled 
DSBs and other DNA lesions. Certain types of DNA damage 
pose a strong impediment to the DNA-replication 
machinery, and recombination of a damaged DNA with 
its sister chromatid re-establishes the DNA replication 
fork3. Meiotic recombination is 100–1,000-fold more fre-
quent than mitotic recombination, and it usually involves 

homologous chromosomes and generates chromosome-
arm crossovers. These crossovers are essential for proper 
chromosome segregation at the first meiotic division2,4. 
Mitotic HR differs from meiotic HR in that few events are 
associated with crossover and indeed, crossover formation 
is actively suppressed by specialized DNA helicases (see 
below). Some of these DNA helicases also prevent inap-
propriate HR events that can cause cell-cycle arrest or 
interfere with post-replication DNA repair (see below).

Much of our knowledge on HR pathways has come 
from studies on meiotic recombination that is initiated 
in specific recombination hotspots, which are targeted 
by the Spo11 complex to form DSBs11, and also from 
HR-reporter systems that involve a site-specific DSB that 
has been introduced by endonucleases2,4,12. The past decade 
or so has witnessed tremendous progress in deciphering 
the intricacies of HR. Specifically, the mechanistic under-
standing of the HR machinery is being advanced by the 
burgeoning biochemical and structural characteriza-
tion of recombinases and of the accessory factors and 
regulators that help tune the efficiency of this machinery. 
Cell-biological and chromatin immunoprecipitation 
experiments have helped to elucidate the temporal order 
of recruitment of HR factors to DSBs in the cell and 
have validated the biological relevance of results from 
biochemical experiments. The link between chromatin 
and HR is also beginning to be appreciated.

In this review, we first provide a primer on the most 
important HR pathways that are connected with DSB 
repair (DSBR) and that are relevant for understanding 
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Meiosis I
The successful completion of 
meiosis requires two cell 
divisions. Meiosis I refers to the 
first division in which the pairs 
of homologous chromosomes 
are segregated into the two 
daughter cells.

Mechanism of homologous 
recombination: mediators and 
helicases take on regulatory functions
Patrick Sung* and Hannah Klein‡

Abstract | Homologous recombination (HR) is an important mechanism for the repair of 
damaged chromosomes, for preventing the demise of damaged replication forks, and for 
several other aspects of chromosome maintenance. As such, HR is indispensable for genome 
integrity, but it must be regulated to avoid deleterious events. Mutations in the tumour-
suppressor protein BRCA2, which has a mediator function in HR, lead to cancer formation. 
DNA helicases, such as Bloom’s syndrome protein (BLM), regulate HR at several levels, in 
attenuating unwanted HR events and in determining the outcome of HR. Defects in BLM are 
also associated with the cancer phenotype. The past several years have witnessed dramatic 
advances in our understanding of the mechanism and regulation of HR.
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Fanconi anaemia
(FA). A genetically inherited 
anaemia that leads to bone 
marrow failure. Patients with FA 
are also susceptible to acute 
myelogenous leukaemia and 
squamous cell carcinomas in 
multiple organs. The disease is 
genetically complex.

Mating-type switching
Haploid S. cerevisiae cells can 
be of one of two mating types. 
Only cells of opposite mating 
types can mate to form a 
diploid. Cells can switch their 
mating type through an 
HR-dependent process.

Crossover
One of the possible outcomes 
of a physical exchange 
between duplex DNA 
molecules. Crossover can occur 
between sister chromatids or 
between the non-sister 
chromatids of a homologous 
pair of chromosomes. 
Crossover between non-sister 
chromatids results in new 
combinations of parental 
alleles on the crossover 
chromosomes.

DNA helicase
An enzyme that uses the 
energy from ATP hydrolysis to 
separate the two DNA strands 
in a double helix.

Post-replication DNA repair
A process that repairs gaps on 
newly replicated DNA using a 
DNA polymerase. The gaps 
usually occur opposite adducts 
or other lesions on the 
template strand. Post-
replication repair fills in the 
gaps but does not remove the 
lesions from the template 
strand DNA.

Endonuclease
An enzyme that catalyses 
hydrolytic cleavage of DNA in 
the middle of a DNA strand or 
a double helix.

the mechanism and regulation of recombination in 
general. Second, we discuss the mechanistic principles 
that underlie the action of the recombinases, which 
constitute the catalytic core of the HR machinery. And 
third, we underline the essence of recently published 
studies on the functions of various regulatory factors 
that enhance or attenuate the efficiency of HR or direct 
the choice of a particular recombination pathway. 
We highlight some of the most pertinent questions 
concerning the mechanism and regulation of HR. 
The role of chromatin in HR-mediated DSBR has been 
the subject of several comprehensive reviews, and we 
invite readers to refer to some of these sources13,14 for 
information.

HR-mediated DSBR
There are several distinct HR pathways for DSBR. The 
DSBR model was developed from transformation studies 
in yeast, which involved linear plasmids that carried 
yeast chromosomal DNA sequences and the monitoring 
of their integration into homologous chromosomal 
sequences15–17. The model explains most of the meiotic 
genetic recombination segregation data of marker 
alleles from fungi, including the association of gene 

conversion with crossovers. The details of the DSBR 
model have been worked out in studies on meiotic 
recombination that is initiated by programmed DSBs. 
The broken chromosome ends are first processed to 
give single-stranded DNA (ssDNA) tails, which invade 
a homologous chromosome to copy genetic informa-
tion into the donor chromosome (FIG. 2a). Resolution 
of the exchanged DNA strands can result in crossover, 
whereby segments of the interacting chromosomes are 
exchanged (FIG. 2b). Central to the DSBR model is the 
formation of a DNA joint molecule that harbours two 
Holliday junctions (HJs; FIG. 2b). The existence of such a 
DNA intermediate has been verified in two-dimensional 
gel analysis of meiotic HR18–20.

Mitotic DSBR is frequently unassociated with cross-
over, and to account for this, the synthesis-dependent 
strand-annealing (SDSA) model has been proposed21–24. 
The SDSA model is similar to the DSBR model in the 
initial steps of DSB-end processing and invasion into a 
homologous chromosome (FIG. 2a), but instead of captur-
ing the second end of the DSB into the recombination 
intermediate, the invading strand is displaced after 
repair synthesis and reanneals with the single-stranded 
tail on the other DSB end (FIG. 2c). SDSA probably also 
accounts for those meiotic DSBR events that do not give 
rise to crossovers25.

If a DSB occurs between closely repeated sequences, 
then it can also be repaired by the HR process of single-
strand annealing (SSA). In the SSA pathway, the DSB 
ends are processed to form ssDNA tails that can anneal 
with each other. SSA does not require the full repertoire 
of HR genes, as the repair process does not require 
strand invasion2,4.

Last, when a DSB has only one end, as might occur at 
a collapsed replication fork in which one branch of the 
fork has been lost, the single end can participate in an 
HR reaction that is known as break-induced replication 
(BIR)2,4,5. In this reaction, the DNA end is processed to 
give a single-stranded tail that invades a homologous 
sequence, followed by DNA synthesis to copy information 
from the donor chromosome. If the sequence that is used to 
initiate the BIR mechanism is part of a repeated-sequence 
family and is located on a non-homologous chromo-
some, BIR can result in a non-reciprocal trans location, 
which joins part of one chromosome to a different 
chromosome. BIR is mostly dependent on the Rad51 
recombinase, but can also occur in the absence of 
Rad51 (REFS 26,27). BIR provides a means for the elongation 
of shortened telomeres5.

The basal HR machinery
The RAD52 epistasis group. HR is catalysed by a class of 
enzyme known as recombinases, the activity of which is 
tightly regulated by other factors (TABLE 1 and see below). 
Much of the genetic framework concerning the basal 
HR machinery and its regulation in eukaryotic cells 
was initially defined in the budding yeast S. cerevisiae. 
Due to the role of HR proteins in DSBR and other 
DNA-repair reactions, mutants of the corresponding 
genes are hypersensitive to DNA-damaging agents, 
especially those, such as ionizing radiation and 

Figure 1 | Biological roles of HR. a | The mechanism of 
homologous recombination (HR) repairs chromosomes 
that harbour DNA double-strand breaks (DSBs) and other 
types of damage. In mitotic cells, the repair of DSBs by HR 
most often involves the use of the intact sister chromatid 
as an information donor, and therefore occurs primarily in 
the late S and G2 phases of the cell cycle, when the 
sister chromatid becomes available. Because the sister 
chromatid is identical in sequence to the damaged DNA 
molecule, the repair reaction faithfully restores the genetic 
configuration of the injured chromosome and is viewed as 
being error free. DSB repair can also occur by a different 
mechanism known as non-homologous DNA end-joining, 
which is much more error prone than HR2,154. b | The 
replication of a damaged DNA template, such as one that 
harbours a DNA nick, can lead to a broken DNA replication 
fork. The newly formed sister chromatid serves to direct 
the repair of the damaged DNA so as to prevent fork 
demise. c | Early on in meiosis, programmed DSBs are made 
in all the chromosomes, and these DSBs trigger HR 
between chromosome homologues rather than sister 
chromatids. These meiotic HR events help ensure the 
proper segregation of the chromosome homologues at the 
first meiotic division. d | Genetic studies, first in 
Saccharomyces cerevisiae and later in other organisms, 
have unveiled a role for HR proteins in several aspects of 
telomere maintenance, including the elongation of 
shortened telomeres without the need for telomerase, 
which is the enzyme that is responsible for adding the 
telomeric sequence at the end of chromosomes.
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Chromatin 
immunoprecipitation
A technique for determining 
whether a protein binds to a 
particular region of the 
genome in vivo. It involves 
treating live cells with 
formaldehyde to form 
nonspecific crosslinks between 
the DNA and any associated 
proteins. The cells are then 
lysed, the genomic DNA is 
sheared into small fragments 
and the protein of interest is 
immunoprecipitated. Any 
protein-associated DNA is then 
removed and analysed by PCR. 

DNA-crosslinking chemicals, that directly or indirectly 
lead to the formation of DSBs. Early work in the 1960s 
from several laboratories28–33 led to the isolation of 
X-ray-sensitive mutants of S. cerevisiae. It was decided 
at the IVth International Yeast Genetics Conference in 
1970 to refer to these mutants as rad mutants and to 
reserve the numbers 50 (rad50) and onwards for these 
mutants. A detailed examination of the initial collec-
tion of 64 mutants from laboratories around the world 
resulted in the classification of the various RAD genes as 
the RAD52 epistasis group30. Since then, four additional 
genes have been added to the RAD52 epistasis group: 
RAD59, MRE11, XRS2 and RDH54/TID1 (REFS 33–38). 
Mutation in any of the RAD52 group of genes results in 
DNA-damage sensitivity and defective HR.

The known biochemical attributes and functions of 
the proteins that are encoded by the RAD52 group genes 
and their human orthologues are summarized in TABLE 1. 
Of particular interest is the RAD51 gene, the product of 
which is structurally related to the E. coli RecA protein 
and, similarly to RecA, possesses a recombinase activity 
that mediates the linkage of recombining chromosomes 
via DNA joint formation39. RAD51 and other members 
of the RAD52 epistasis group are needed for meiotic 
HR and chromosome segregation in meiosis I. The 
efficiency of HR is enhanced by mediator proteins 
that promote the loading of Rad51 onto ssDNA and 
is attenuated by the Srs2 helicase that dismantles the 
Rad51–ssDNA complex (see below). Other helicases 
control HR at the level of crossover formation. The 
Mer3 helicase ensures that enough crossovers are made 
during meiosis, whereas the Sgs1 and BLM helicases 
suppress spurious crossovers (see below).

The meiotic recombinase Dmc1 and its associated factors. 
A study that was aimed at uncovering genes the expres-
sions of which are enhanced or restricted to meiosis led 
to the isolation of a gene, DMC1, that encodes a RecA/
Rad51-like recombinase enzyme40. Further genetic, 
cell-biological and biochemical analyses have unveiled 
protein factors that physically and functionally interact 
with Dmc1 (TABLE 1). Overall, the mechanistic attributes 
of the Dmc1-associated HR machinery are not as well 
defined as the Rad51-associated machinery.

Formation of recombinase filaments on ssDNA
As discussed above (and depicted in FIG. 2a), the sub-
strate of the HR machinery is ssDNA that stems from 
the processing of a DSB (or another lesion). The ssDNA 
serves to attract the recombinase, either Rad51 or Dmc1, 
and its associated ancillary factors. Studies that are 
directed at deciphering the recombinase mechanism have 
been guided by knowledge of the prokaryotic prototype 
E. coli RecA protein (BOX 1). RecA and its orthologues, 
including Rad51 and Dmc1, possess protein motifs that 
enable them to bind and hydrolyse ATP. Both Rad51 and 
RecA exist as a protein ring that consists of six and seven 
monomers, respectively. RecA and Rad51 polymerize on 
ssDNA to form a highly ordered, right-handed helical 
protein filament41–43, which is commonly known as the 
presynaptic filament. The presynaptic filament has a 
pitch of 95–100 Å, comprising 6 recombinase molecules 
and 18 nucleotides of the DNA ligand per helical repeat 
(FIG. 3). Notably, the ssDNA is held in an extended for-
mation in the presynaptic filament, being stretched by 
as much as 50% of the length of a B-form duplex DNA 
mole cule42–45. Assembly of the presynaptic filament 
requires ATP binding, but not ATP hydrolysis46, 47.

The catalytic core of the HR machinery. The assembly 
of the presynaptic filament is the most important step 
in HR reactions as it provides the catalytic centre for 
the formation of DNA joints between the two recom-
bining DNA molecules. Extensive biochemical studies 
with the RecA presynaptic filament have uncovered two 
DNA-binding sites: the ‘primary’ site accommodates the 

Figure 2 | Repair of DNA double-strand breaks by DSBR and SDSA. Double-strand 
breaks (DSBs) can be repaired by several homologous recombination (HR)-mediated 
pathways, including double-strand break repair (DSBR) and synthesis-dependent strand 
annealing (SDSA). a | In both pathways, repair is initiated by resection of a DSB to provide 
3′ single-stranded DNA (ssDNA) overhangs. Strand invasion by these 3′ ssDNA overhangs 
into a homologous sequence is followed by DNA synthesis at the invading end. b |After 
strand invasion and synthesis, the second DSB end can be captured to form an 
intermediate with two Holliday junctions (HJs). After gap-repair DNA synthesis and 
ligation, the structure is resolved at the HJs in a non-crossover (black arrow heads at both 
HJs) or crossover mode (green arrow heads at one HJ and black arrow heads at the 
other HJ). c | Alternatively, the reaction can proceed to SDSA by strand displacement, 
annealing of the extended single-strand end to the ssDNA on the other break end, 
followed by gap-filling DNA synthesis and ligation. The repair product from SDSA is 
always non-crossover.
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Holliday junction
A cruciform DNA structure that 
is generated during the 
synaptic phase of homologous 
recombination. It is named 
after Robin Holliday, who 
proposed its existence in 
1964.

Epistasis group
A group of genes that are most 
frequently defined by double-
mutant analyses and function 
in the same biological pathway.

Orthologue
The structural and functional 
equivalent of a gene or protein 
in a different species.

initiating ssDNA substrate, and the ‘secondary’ site helps 
capture the donor duplex DNA molecule44,45. The syn-
aptic complex refers to the ensemble in which the three 
DNA strands from the participant DNA molecules are 
bound within the recombinase protein filament (FIG. 3). 
The ‘search’ for homology in the recombining DNA mole-
cules and the DNA joint formation that occurs between 
them happens within the confines of the synaptic com-
plex (for a detailed discussion of the mechanism of DNA 
homology search and DNA joint formation, see REFS 

44,45). No molecular details concerning the transition 
of the recombinase protein ring to the presynaptic fila-
ment are available to date. Although filamentous forms 
of RecA and Rad51 have been characterized by X-ray 

crystallography 48–50, a high-resolution structure of the 
presynaptic filament or the synaptic complex has not yet 
been reported.

Presynaptic filaments of DMC1. Human DMC1 exists 
as an octameric protein ring51. The initial characteriza-
tion of human DMC1 showed only a modest capability 
for this protein to catalyse DNA joint formation52,53, 
and electron microscopy studies did not detect protein-
filament formation on DNA. Instead, pairs of stacked 
protein rings with DNA that passed through the channel 
of the toroidal structure were observed51,53. A more recent 
study showed a robust recombinase activity in human 
DMC1 (REF. 54). Importantly, electron microscopy was 

Table 1 | Mitotic and meiotic homologous-recombination factors

Saccharomyces 
cerevisiae

Human Biochemical function(s) Notable features

Factors that function with RAD51

Rad50 RAD50 DNA binding; DNA-dependent ATPase Member of the SMC protein family; forms 
a complex with MRE11 and NBS1; involved 
in DSB end resection; involved in 
DNA-damage checkpoints

Mre11 MRE11 DNA-structure-specific endonuclease; 
3′→5′ exonuclease

Forms a complex with RAD50 and NBS1; 
involved in DSB-end resection; involved in 
DNA-damage checkpoints

Xrs2 NBS1 DNA binding Forms a complex with RAD50 and MRE11; 
involved in DSB-end resection; involved in 
DNA-damage checkpoints

Rad52 RAD52 ssDNA binding and annealing; 
recombination mediator 

Interacts with RAD51 and RPA

Rad54 RAD54, 
RAD54B

dsDNA-dependent ATPase; dsDNA 
translocase; induces superhelical stress in 
dsDNA; stimulates the RAD51-mediated 
D-loop reaction; chromatin remodeller

Member of SWI2/SNF2 protein family; 
interacts with RAD51; Yeast Rad54 strips 
Rad51 from dsDNA

Rdh54/Tid1 RAD54, 
RAD54B

dsDNA-dependent ATPase; dsDNA 
translocase; induces superhelical stress in 
dsDNA; stimulates the RAD51-mediated 
D-loop reaction

Member of SWI2/SNF2 protein family; 
interacts with RAD51

Rad55–Rad57 XRCC2, 
XRCC3, 
RAD51B, 
RAD51C, 
RAD51D

Binds ssDNA; recombination mediator 
(shown for Rad55–Rad57 and RAD51B–
RAD51C complexes only)

The human proteins form complexes 
(see main text for details); might stabilize 
the presynaptic filament; interacts with 
RAD51; Human RAD51C associates with 
Holliday-junction-resolvase activity

Rad59 Unknown ssDNA binding and annealing Homology to Rad52; interacts with Rad52

Mer3 Unknown ssDNA-dependent ATPase; 3′→5′ DNA 
helicase activity; unwinds the Holliday 
junction

Extends the DNA joint made by Rad51

Factors that function with DMC1

Mei5–Sae3 Unknown Predicted recombination-mediator 
activity

Interacts with Dmc1

Hop2–Mnd1 HOP2–
MND1

Binds ssDNA and dsDNA; stimulates the 
DMC1-mediated D-loop reaction

Interacts with DMC1

Rdh54/Tid1 RAD54 
RAD54B

DNA-dependent ATPase; DNA 
translocase; induces superhelical stress 
in dsDNA; predicted to stimulate the 
DMC1-mediated D-loop reaction; 
Human RAD54B stimulates the DMC1-
mediated D-loop reaction

Yeast Rdh54 was identified by yeast two-
hybrid interaction with Dmc1; Human 
RAD54B interacts with DMC1

For more information on specific homologous-recombination activities, see Refs 2, 54, 61, 97, 98, 155 and 157–159. D-loop, 
displacement-loop; DSB, double-strand break; dsDNA, double-stranded DNA; Mnd1/MND1, meiotic nuclear division protein-1; 
RPA, replication protein A; SMC, structural maintenance of chromosomes; ssDNA, single-stranded DNA.
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Paralogue
A protein that shares some 
relatedness in sequence with 
another protein but not 
necessarily in function. 
Paralogues arise through gene 
duplication.

used to show the formation of helical DMC1–ssDNA 
nucleoprotein filaments under reaction conditions in 
which DMC1 is capable of performing the recombina-
tion reaction54 (FIG. 4). Since then, several studies have 
independently shown that the catalytic form of DMC1 
comprises a helical filament of this recombinase on 
ssDNA55–57. That DMC1 also mediates recombination 
in the context of a nucleoprotein filament helps to estab-
lish the presynaptic filament as the universal catalytic 
core intermediate in recombinase function.

Presynaptic filament assembly and maintenance
The sections above emphasized the importance of the 
presynaptic filament in the recombination reaction. 
Paradoxically, nucleation of the recombinase onto ssDNA 
is a slow process. As a consequence, presynaptic filament 
assembly is particularly prone to interference by other 
proteins that bind ssDNA. In the physiological setting, 
replication protein A (RPA), which is an abundant 
ssDNA-binding protein, poses a challenge to successful 
presynaptic filament assembly by its competition for sites 
on the initiating ssDNA substrate in HR reactions58–60. 
A combination of biochemistry and chromatin immuno-
precipitation has been used to identify HR factors within 
the S. cerevisiae RAD52 gene group that are capable of 
overcoming the inhibitory effect of RPA on Rad51 pre-
synaptic filament assembly. Such ‘recombination media-
tors’ include the Rad52 protein and the heterodimeric 
Rad55–Rad57 complex2,61–65. More recently, biochemical 
evidence was presented to support the idea that the tumour 
suppressor BRCA2 also functions as a recombination 
mediator in RAD51-mediated reactions66,67.

Action of recombination mediators. Rad52 physically 
interacts with Rad51 and possesses a ssDNA-binding 
activity2,61,68–70. Rad52 nucleates Rad51 onto an RPA-
coated ssDNA template to facilitate presynaptic filament 
assembly. A substoichiometric amount of Rad52, relative 
to Rad51, is sufficient for presynaptic filament assem-
bly, which is indicative of a catalytic mode of action for 
Rad52 (REFS 62–64). This finding indicates that Rad52 

helps gather a limited number of either monomeric 
Rad51 molecules or Rad51 protein rings to RPA-covered 
ssDNA in order to seed the assembly of a nascent recom-
binase filament. But, the subsequent displacement of 
RPA is linked to the extension of the nascent filament by 
the polymerization of additional Rad51 molecules that 
are free from Rad52 (REFS 71,72). The Rad52-mediated 
delivery of Rad51 to RPA-coated DNA is dependent on 
complex formation between Rad51 and Rad52 (REFS 63,73). 
It is expected, although not yet proven, that the DNA-
binding activity of Rad52 is critical for its recombination-
mediator function. As well as binding Rad51 and ssDNA, 
Rad52 also seems to interact with RPA74,75, but the func-
tional relevance of this RPA-binding activity remains to 
be elucidated. Interestingly, although a Rad52 ortho-
logue exists in vertebrates, its deletion from the genome 
causes only a mildly affected DNA recombination and 
repair phenotype in mouse and chicken DT40 cells2,76,77. 
However, combining the RAD52 mutation with a muta-
tion in XRCC3, which is one of the five RAD51 paralogues 
that are needed for RAD51 presynaptic assembly or 
maintenance (see below), results in lethality in DT40 
cells78. These observations indicate that in higher organ-
isms, the promotion of RAD51 presynaptic filament 
assembly is primarily mediated by factors other than 
RAD52, with RAD52 having a subsidiary role.

The Rad55–Rad57 complex helps alleviate the inhibi-
tion of presynaptic filament assembly that is imposed 
by RPA65. Like Rad52, the Rad55–Rad57 heterodimer 
physically interacts with Rad51 and has a ssDNA-binding 
activity65,79,80, but whether this protein complex also 
interacts with RPA has not been determined. Results 
from genetic studies have hinted that Rad55–Rad57 
might stabilize the already assembled Rad51 presynaptic 
filament81. If so, this would mark an important functional 
difference between the mediator activity of Rad55–Rad57 
and that provided by Rad52. Five proteins — XRCC2, 
XRCC3, RAD51B, RAD51C and RAD51D — that are 
related to Rad55 and Rad57 in structure and probably 
in function, have been described in higher organisms, 
including humans2,4. These five Rad55- and Rad57-like 

Box 1 | RecA

Clark and Margulies1 first isolated mutants of the Escherichia coli recA gene on the basis of the inability of these mutants 
to conduct recombination and on the basis of their sensitivity to DNA-damaging agents. We now know that RecA is 
central to several DNA-repair and replication-fork-restart pathways. The biochemical functions of RecA have been 
studied intensely in many laboratories over a period of two decades. The large body of knowledge that has accrued from 
these endeavours makes RecA the paradigm for understanding the general mechanism of recombinases, including Rad51 
and Dmc1. Biochemically, RecA seems to be a more versatile recombinase than its eukaryotic counterparts. For example, 
the RecA presynaptic filament can bypass regions of DNA heterology in the recombining DNA molecules and also 
promotes a specialized recombination reaction that involves two duplex DNA molecules (which is known as four-
stranded exchange), whereas there is no evidence that either Rad51 or Dmc1 is capable of accomplishing these feats44.

In addition to its involvement in recombination reactions, RecA also fulfils a pivotal role in other aspects of DNA 
metabolism. Upon DNA damage, RecA serves as a cofactor in the autocatalytic cleavage of the transcription repressor 
LexA, which then leads to the coordinated upregulation of more than 40 genes that are required for the tolerance and 
removal of DNA damage in a process known as the SOS response. In a similar fashion, RecA helps mediate the 
autocatalytic cleavage of the UmuD protein to promote the assembly of a DNA polymerase, Pol V, that comprises the 
cleaved UmuD polypeptide (known as UmuD′) and the UmuC protein. Remarkably, RecA also cooperates with Pol V in the 
replicative bypass of DNA lesions. The RecA–Pol V complex has been dubbed the ‘mutasome’, and the specialized 
DNA-damage-tolerance mechanism that is mediated by the mutasome153 is referred to as translesion DNA synthesis. It is 
not thought that Rad51 or Dmc1 are involved in any transcriptional regulation event or translesion DNA synthesis.
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Presynaptic filament

Synaptic complex

D-loop formation

Accessory factors
(Rad54, Rad54B, Rdh54,
Hop2–Mnd1)

Rad51 or Dmc1

factors are also referred to as RAD51 paralogues because 
of their limited sequence resemblance to RAD51. 
Several complexes of the RAD51 paralogues have been 
noted: namely, RAD51B–RAD51C, RAD51D–XRCC2 
and RAD51C–XRCC3, as well as a tetrameric complex 
of RAD51B–RAD51C–RAD51D–XRCC2 (REFS 82,83). 
These protein complexes probably function to assemble 
and/or preserve the RAD51 presynaptic filament, as the 
deletion of any one of the RAD51 paralogues results in an 
inability to deliver RAD51 to recombination substrates 
in the cell84,85 and a recombination-mediator activity 
has been ascribed to the RAD51B–RAD51C complex86. 
Interestingly, results from a recent study have indicated 
that the RAD51C–XRCC3 complex, apart from its pre-
synaptic role, is involved in the resolution of late DNA 
intermediates in the recombination process87.

BRCA2, a tumour suppressor and recombination mediator. 
Mutations in the human BRCA2 gene give rise to familial 
breast and ovarian cancers9,10, and can also cause the 
cancer-susceptibility syndrome Fanconi anaemia7. 
BRCA2-deficient cells show a marked hypersensitivity 
to DNA-damaging agents, including ionizing radiation, 
DNA-alkylating chemicals and DNA-crosslinking agents, 
which is indicative of an impairment of the cellular 

DNA-repair capacity10,88,89. BRCA2 is required for effi-
cient HR90,91, and several observations have provided 
clues that BRCA2 regulates the RAD51 recombinase 
activity by providing a recombination-mediator function. 
First, BRCA2 physically interacts with RAD51 through 
several copies of a conserved module known as the BRC 
repeat89,92 and also through its C terminus88. Second, 
BRCA2 binds ssDNA67,93. And third, BRCA2-mutant 
cells are deficient in assembling DNA-damage-induced 
nuclear RAD51 foci91, which are thought to represent 
RAD51 presynaptic filaments on damaged DNA. Indeed, 
biochemical studies that were conducted with the Brh2 
protein, which is a BRCA2-like molecule that is needed 
for HR and meiosis in the fungus Ustilago maydis94, and 
with a human BRCA2-derived polypeptide have pro-
vided compelling evidence that BRCA2 serves such a 
recombination-mediator role66.

Brh2 that had been purified as a complex with a small 
acidic polypeptide known as Dss1 was found to bind 
Rad51 and DNA — in particular, partially duplex DNA 
that harbours a 3′ single-strand overhang66. Importantly, 
the Brh2–Dss1 complex was shown to recruit Rad51 to 
RPA-coated 3′ ssDNA and to seed presynaptic filament 
assembly there66,95 (FIG. 5). More recently, biochemical 
and electron microscopy studies demonstrated a 
recombination-mediator activity in a polypeptide, known 
as BRC3/4–DBD, that harbours the BRC3 and BRC4 
repeats and the entire DNA-binding domain (DBD) from 
human BRCA2 (REF. 67) (FIG. 5). Furthermore, whereas 
RAD51 alone cannot discriminate between ssDNA and 
double-stranded DNA (dsDNA), BRC3/4–DBD specifi-
cally targets RAD51 to ssDNA67. Evidence was presented 
in these studies that the BRC repeats and the DBD are 
both required for functional interactions of BRCA2 or 
Brh2 with RAD51 (REFS 66,67). Taken together, and in 
accordance with the available cytological and genetic 
data9,10, recent biochemical studies have provided com-
pelling evidence that BRCA2 specifically targets RAD51 
to ssDNA and also promotes the use of RPA-coated 
ssDNA for presynaptic filament assembly66,67.

The C terminus of BRCA2 harbours a RAD51-binding 
domain that is needed for the efficiency of HR. This 
RAD51-binding domain is unrelated to the BRC repeat10, 
and its phosphorylation by cyclin-dependent kinases 
negatively regulates the association with RAD51 (REF. 96). 
The mechanistic role of this RAD51-binding domain in 
HR has not yet been defined.

Putative recombination mediators of Dmc1. Very little 
is currently known about how the assembly and main-
tenance of the Dmc1 presynaptic filament are regulated. 
Genetic and cytological results have provided clues that 
the Mei5–Sae3 complex might fulfil a recombination-
mediator role in Dmc1-dependent HR97,98. Similar to the 
dmc1 mutant, the mei5 and sae3 mutants are defective 
in meiotic HR and exhibit meiotic prophase arrest due 
to an accumulation of unrepaired DSBs97,98. In wild-type 
meiosis, Dmc1 and Rad51 are targeted to recombina-
tion sites and colocalize in nuclear foci99. In cells that 
lack Mei5 or Sae3, Dmc1 targeting is impaired, whereas 
Rad51 targeting remains normal97,98. Mei5 and Sae3 

Figure 3 | Recombinase filament and displacement-
loop formation. The recombinases Rad51 or Dmc1 (green 
circles) assemble onto the single-stranded DNA (ssDNA) 
tails that have been derived from the nucleolytic 
processing of a DNA double-strand break (DSB) to form a 
helical protein filament, which is known as the presynaptic 
filament. The presynaptic filament binds duplex DNA to 
form the synaptic complex and ‘searches’ for DNA 
homology in the duplex DNA molecule. With the aid of 
accessory factors including Rad54, Rad54B, Rdh54 and 
Hop2–Mnd1 (meiotic nuclear division protein-1), the 
ssDNA invades the homologous region in the duplex to 
form a DNA joint, known as the displacement (D)-loop. 
Rad54, Rad54B and Rdh54 are related proteins that 
promote the DNA-strand-invasion step by changing the 
topology of the DNA2,61,155. The manner in which the 
Hop2–Mnd1 complex promotes the D-loop reaction has 
not yet been delineated. 
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form a stable complex98. Mei5 interacts with Dmc1 in 
a yeast two-hybrid assay, and the Mei5–Sae3 complex 
can be co-immunoprecipitated with Dmc1 from meiotic 
cell extracts98. It is thought that Mei5–Sae3 facilitates 
the assembly of the Dmc1 presynaptic filament97,98. 
It remains to be determined experimentally whether 
Mei5–Sae3 has a recombination-mediator activity (that 
is, whether it mediates Dmc1 presynaptic filament 
assembly on RPA-coated ssDNA) and whether its inter-
action with Dmc1 favours the formation of helical fila-
ments over rings97,98 (FIG. 4). It is interesting to note that 
the formation of Dmc1 foci depends on Rad51 (REF. 99), 
which indicates that Rad51 somehow facilitates the delivery 
of Dmc1 to the HR substrate or enhances the stability 
of the Dmc1 presynaptic filament.

Recent studies have shown a physical and a func-
tional interaction between the Arabidopsis thaliana 
BRCA2 protein and DMC1. Depletion of BRCA2 by 
RNA-interference-mediated silencing results in defec-
tive meiosis100, and BRCA2 binds not only RAD51 but 
also DMC1 through its BRC repeats101. Further analyses 
have provided evidence that the BRCA2–DMC1 axis 
is indispensable for meiosis100. Future studies with 
purified proteins are needed to validate the hypothesis 
that BRCA2 works as a recombination mediator in 
DMC1-mediated HR.

Regulation of HR by DNA helicases
Even though HR is a major DNA-repair apparatus and 
helps prevent replication fork demise, inappropriate or 
untimely HR events can have deleterious consequences. 
For example, the formation of crossovers (via the DSBR 
pathway) during HR can lead to the loss of heterozygosity 
(LOH). If the LOH events involve genes that regulate 
cell growth and differentiation, they could lead to cell 
transformation and cancer. Furthermore, if crossover 
recombination is allowed to occur among repetitive 
DNA sequences dispersed within the genome (this is 
known as ectopic recombination), chromosome trans-
locations can occur. The significance of such transloca-
tions in cancer is well documented102–106. Genetic studies 
in model organisms such as S. cerevisiae have provided 
evidence that HR can interfere with post-replication 
repair and cause the formation of intermediates that are 
difficult to resolve and therefore result in the prolonged 
activation of DNA-damage checkpoint-mediated cell-
cycle arrest as well as chromosome rearrangements. 
For these reasons, HR must be tightly regulated so as 
to safeguard the cell against the harmful consequences 
of inappropriate or untimely events107–111.

Genetic analyses in S. cerevisiae have implicated the 
Srs2 and Sgs1 helicases in the prevention of undesir-
able HR events107. Bloom’s syndrome is an autosomal 
recessive disorder that is marked by growth retarda-
tion, sunlight sensitivity and a strong disposition to 
cancers112. The gene that is mutated in Bloom’s syn-
drome encodes BLM helicase113,114, the orthologue 
of the S. cerevisiae Sgs1 helicase. A hallmark feature of 
BLM-deficient cells is a genome-wide increase in 
the frequency of sister-chromatid exchanges and 
interhomologue recombination8,115. Taken together, 
the existing evidence points to a key role of the BLM 
helicase in HR modulation, much like what has been 
described for Sgs1 (REF. 8).

Mechanism of the Srs2 anti-recombinase function. Srs2 
protein has a 3′→5′ DNA-helicase activity116, and the 
likely functional equivalent in other eukaryotes is FBH1 
(REFS 117,118). The SRS2 gene was initially described after 
the isolation of mutants that could suppress the severe 
UV sensitivity of rad6 and rad18 mutants119–121. It was 
also described as a hyper-recombination mutant122,123 
and as a suppressor of certain rad52 mutants124–126. The 
suppression and recombination phenotypes of the srs2 
mutants require HR functions. These results are best 
explained if Srs2 attenuates recombination and pro-
motes the repair of damaged DNA replication forks. In 
support of the idea that an important function of Srs2 is 
to antagonize Rad51, suppressors of srs2 mutants have 
proven to be mutations in RAD51 that reduce Rad51 
activity in HR127,128. Based on this and other related 
observations, it was deduced that Srs2 must function 
to restrict the activity of Rad51. The mechanistic basis 
of the Srs2 anti-recombinase function was elucidated 
by biochemical studies that showed that Srs2 can dis-
mantle the Rad51 presynaptic filament in a manner 
that requires ATP hydrolysis by Srs2 (REFS 129–131) 
(FIG. 6a).

Figure 4 | DMC1: rings versus filaments. a | Human DMC1 can form either stacked 
rings51,53,54 or helical filaments54–57 on DNA, depending on whether ATP is present or 
not54. b | This electron micrograph shows helical filaments (see arrow) of DMC1 protein 
on single-stranded DNA (ssDNA). These filaments are the catalytically active form of 
DMC1 (REF. 54). DNA-free DMC1 protein rings (not marked) were also seen. c | This 
electron micrograph shows stacked DMC1 rings (two such stacked rings are indicated 
by the double arrow) on ssDNA. These stacked DMC1 rings seem incapable of mediating 
the HR reaction54.
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Genetic evidence has implicated Srs2 in preventing 
the use of ssDNA gaps that arise during stalled repli-
cation as HR substrates and in specifically promoting 
post-replication DNA repair111,119. When leading- and 
lagging-strand synthesis at the replication fork becomes 
uncoordinated, due to blockage (by a bulky DNA lesion, 
for example) on one of the template strands, a single-
strand gap occurs at the fork. The gap is often filled by 
a translesion DNA polymerase. To synthesize across the 
gap, the ssDNA region must be free of Rad51 protein. 
Srs2 is thought to be brought to stalled DNA-replication 
complexes to prevent Rad51-filament formation on the 
ssDNA132,133. The recruitment of Srs2 to the DNA rep-
lication fork is dependent on PCNA (proliferating cell 
nuclear antigen), which is an essential component of the 
DNA-replication apparatus and functions by tethering 
the DNA polymerase to the DNA template. PCNA is 
subject to several modifications that affect its inter action 
with DNA polymerases and other proteins. Srs2 binds 
PCNA, and the modification of PCNA by SUMO (small 
ubiquitin-like modifier) further enhances complex 
formation with Srs2. The targeting of Srs2 to stalled 
replication forks by SUMO-modified PCNA is thought 
to promote translesion-synthesis gap repair by removing 
Rad51 (REFS 132,133). During DSBR by HR, the stages 
after strand invasion also seem to be subject to regulation 
by Srs2. Specifically, DSBs in the srs2∆ mutant result in a 
prolonged DNA-damage-checkpoint-mediated cell-cycle 

arrest134,135. This arrest is dependent on Rad51. One 
explanation for this phenotype is that the capability 
of Srs2 to disassemble the Rad51 presynaptic filament 
prevents the accumulation of a Rad51-containing 
DNA intermediates that can trigger the DNA-damage-
checkpoint-mediated arrest response.

Crossover suppression by BLM and Sgs1. In the DSBR 
pathway of HR, an intermediate with a double HJ is 
generated (FIG. 2b). The double HJ can be resolved by 
a specific endonuclease, known as ‘resolvase’, that can 
produce crossover recombinants136 (FIG. 2b). However, 
some DSBR intermediates that harbour the double HJ 
never actually give rise to any crossovers25, which indi-
cates the presence of a mechanism that specifically sup-
presses crossover formation, especially during mitotic 
HR. Based on mutant analyses, the two RecQ helicases 
Sgs1 and BLM have been implicated in this novel mecha-
nism of non-crossover recombination108,110,137,138. Acting 
in partnership with topoisomerase III, Sgs1 or BLM heli-
case is thought to push the two HJs between the paired 
duplexes inward in a process called branch migration, 
to form a hemicatenane structure that is then resolved 
by topoisomerase III to yield only non-crossover prod-
ucts (FIG. 6b). Direct biochemical evidence that supports 
this premise has come from recent studies that show an 
ability of the BLM–topoisomerase-III pair to dissolve a 
DNA substrate that contains two HJs to generate non-
crossover recombinants108,139,140 (FIG. 6B). Also, genetic 
studies have shown that the crossover recombinant class 
is increased in sgs1∆ mutants110.

The suppression of crossovers by Sgs1 is an important 
regulatory mechanism for ensuring the proper distribu-
tion of crossovers for homologue-chromosome segre-
gation at the first meiotic division141. There is a rise in 
crossover but not non-crossover formation in the sgs1 
mutant, which indicates that Sgs1 prevents some HR 
intermediates from becoming crossovers. The increase 
in crossovers is accompanied by a meiotic pachytene-
checkpoint arrest and poor viability of the meiotic 
products.

Genetic studies in the fruitfly Drosophila melanogaster 
have shown that the BLM orthologue MUS-309 has an 
important role in the SDSA pathway of HR. It is thought 
that MUS-309 promotes the dissociation of the DNA 
joint that links the recombining DNA molecules, so as 
to free the invading ssDNA tail for the strand-annealing 
step of SDSA (FIG. 2c)142,143. The result of this putative 
BLM activity is the prevention of the channelling of the 
displacement (D)-loop intermediate into the crossover-
forming DSBR pathway.

Promotion of meiotic crossover formation by Mer3. 
Deletion of the MER3 gene, which encodes a DNA 
helicase, affects the transition of DSBs to late HR inter-
mediates and diminishes the level of meiotic cross overs 
several fold without affecting the formation of non-
crossovers144. The Mer3 protein can unwind different 
DNA structures, including HJs145. Interestingly, the heli-
case activity of Mer3 extends the DNA joint that is made 
by Rad51 (REF. 146). This attribute of Mer3 is thought to 

Figure 5 | Action of recombination mediators. a | In vitro, RAD51 can form the 
presynaptic filament on single-stranded DNA (ssDNA) without the assistance of another 
protein. b | However, in cells, due to competition for sites on the ssDNA substrate, the 
formation of the RAD51 presynaptic filament is strongly suppressed by the ssDNA-
binding replication protein A (RPA). Several recombination mediators that can help 
RAD51 to alleviate the inhibitory effect of RPA have been described. In a recent study, 
a polypeptide that was derived from human BRCA2 protein was shown to nucleate 
RAD51 onto RPA-coated ssDNA to initiate the assembly of the RAD51 presynaptic 
filament67. Brh2 protein from Ustilago maydis, a BRCA2-like protein, binds the 
duplex–ssDNA junction of the recombination substrates and delivers RAD51 at that 
locale66. Biochemical studies have found a recombination-mediator activity in the 
Saccharomyces cerevisiae Rad52 and Rad55–Rad57 complex as well as in the human 
RAD51B–RAD51C complex2,61.
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facilitate the formation of the double HJ during meiotic 
HR. Whether Mer3 functionally synergizes with Dmc1 
in a similar fashion has not been determined.

Conclusions and outlook
Drawing on the insights and conceptual frameworks 
derived from earlier genetic experiments involving model 
eukaryotes, especially S. cerevisiae, studies in vertebrates 
have revealed a remarkable degree of conservation in the 
structure and function of the HR machinery. Importantly, 
a linkage of HR dysfunction to the cancer phenotype is 
now clear. Being guided by the RecA paradigm, studies 
that have been conducted in the recent past have made 
available a considerable body of molecular information on 
the two recombinases Rad51 and Dmc1, and have helped 
to establish the universally conserved nature of the pre-
synaptic filament. Through the biochemical and structural 
characterization of purified proteins and the reconstitu-
tion of recombination reactions, the roles that many of the 
known HR factors fulfil are being clarified. In particular, 
concerted efforts on the U. maydis BRCA2 orthologue 
Brh2 and polypeptides that harbour functional domains 
of the human BRCA2 protein have helped to uncover a 
recombination-mediator function of BRCA2.

We now realize that inopportune HR events can lead 
to cell-cycle perturbation, genome destabilization and 
even cancer formation. Genetic evidence has implicated 
several DNA helicases — Srs2 and Sgs1 in yeast and BLM 
in vertebrates — in the regulation of HR-pathway choice 
and the suppression of unwanted HR events. As briefly 
reviewed in this article, biochemical studies on Srs2 and 
BLM have uncovered two distinct modes of HR control, 
with one being exerted at the level of Rad51 filament 
disassembly (by Srs2) and the other acting on late HR 
intermediates to limit the formation of DNA crossovers 
(by BLM and Sgs1).

Many important questions concerning the mecha-
nism and regulation of HR remain. For example, the 
manner in which the tumour suppressor BRCA1, which 
binds DNA147 and possesses a ubiquitin ligase activity148, 
enhances HR efficiency has not yet been delineated. As for 
BRCA2, we still do not know how phosphorylation96,149,150 
or the associated protein factor DSS1 (REFS 93,151) 
influences the HR function of this tumour suppressor. 
Does BRCA2 have a recombination-mediator role in 
DMC1-mediated HR? Aside from its well documented role 
in the suppression of breast and ovarian cancers, the inac-
tivation of BRCA2 can also cause Fanconi anaemia6,7,152. 

Figure 6 | Regulation of HR by Srs2 and BLM helicases. a | Disruption of the Rad51 presynaptic filament by Srs2. 
Biochemical studies have shown that the Srs2 helicase, at the expense of ATP hydrolysis, dismantles the Rad51 presynaptic 
filament in the 3′→5′ direction129–131. The single-stranded DNA (ssDNA) that becomes available as a result of Rad51 
eviction is immediately occupied by the ssDNA-binding replication protein A (RPA) to prevent the reloading of Rad51 
(REF. 129). This action of the Srs2 helicase prevents unwanted homologous recombination (HR) events and helps to 
channel certain DNA lesions into the Rad6-mediated post-replication-repair pathway107. b | Dissolution of an HR 
intermediate that harbours two Holliday junctions (HJs). The two HJ structures are pushed inward by a DNA helicase to 
form a hemicatenane, which is then dissolved by a topoisomerase to give non-crossover recombinants. This regulatory 
mechanism is thought to prevent undesirable HR outcomes, including the loss of heterozygosity and chromosome 
rearrangements. Recent studies have found that the BLM helicase, topoisomerase IIIα and the BLAP75 (also known as Rmi) 
protein, which interacts with both BLM and topoisomerase IIIα, act together to catalyse the HJ dissolution 
reaction108,139,140,156. DSB, double-strand break.
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Cells from patients with Fanconi anaemia are extremely 
sensitive to DNA-crosslinking agents, which is reflective 
of a failure to remove interstrand DNA crosslinks. It is 
generally thought that HR contributes toward the elimi-
nation of DNA crosslinks and that BRCA2 serves a cru-
cial function in RAD51 recruitment to help effect lesion 
removal7. The molecular details concerning this linkage 

of HR to DNA-crosslink repair remain to be deciphered. 
As mentioned earlier, the functional characterization 
of the meiotic HR machinery that comprises Dmc1 
and its associated factors has lagged behind studies 
on the Rad51-associated HR machinery. This is an area 
wherein we expect to see rapid progress within the next 
few years.
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