Kidney controls acid base by three mechanisms

- Reabsorption of filtered bicarbonate—mainly PCT, lesser extent DCT and thick AL
- Excretion of acids
- Denovo synthesis of bicarbonate (CD) and ammonium (PT)
Renal adaptation to metabolic acidosis

- Known that acid base disturbance modulate proton/bicarbonate transport in cortical collecting duct- fine tuning of Acid/base status
- α- intercalated cells secrete protons
 - apical H⁺-ATPase and basolateral anion exchangers
- β- intercalated cells secrete bicarbonate
 - apical anion exchangers (Pendrin) and basolateral H⁺-ATPase
β Intercalated cell α Intercalated cell
Adaptation of metabolic acidosis and its recovery are associated with changes in anion exchanger distribution and expression in the cortical collecting duct.
Study methods

- Female New Zealand white rabbits
- Acid load with 100mmol/L NH₄CL/7.5% sucrose solution for 3 days
- Recovery done with 100mmol/NaHCO₃/7.5% sucrose for 12-18hrs
- pH and serum HCO₃ levels drawn and pH of urine collected from the bladder
Rabbit Acid Base status

![Graphs showing Urine pH and Serum bicarbonate levels during Normal, Acidosis, and Recovery phases. The graphs indicate significant differences with asterisks (* and **) for Acidosis and Recovery compared to Normal.](image-url)
Pendrin

- Apical chloride / bicarbonate exchanger expressed by β intercalated cells.
- Regulated by change in acid/base status- expression continuously vary with changes in acid base state
Pendrin Expression in CCD
Pendrin expression

Graphs

(b) Pendrin cap expression level
- Normal
- Acidosis
- Recovery

(d) Pendrin-positive cells
- Normal
- 3-day acid
- 7-day acid
- Recovery
β Intercalated cell α Intercalated cell
Acidosis induced basolateral redistribution of AE1
Adaptive changes in the α-intercalated cells

- Acidosis induced a reversible redistribution of AE1 to the basolateral membrane and increased intensity of staining.
- This was reversed by administration of alkali.
Anion exchanger redistribution

![Graph showing relative intensity of AE1 positive cells in normal, acidosis, and recovery stages.](image)

- Basolateral intensity of AE1 positive cells
- Relative intensity
- Normal, Acidosis, Recovery

Significant difference at the recovery stage.
Reversal of ratio of staining

![Graph showing the percentage of total cell number for Basolateral/apical staining intensity under Normal, Acidosis, and Recovery conditions.](image-url)
Changes in distribution of AE1 and number of intercalated cells

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Region</th>
<th>Acid/base status</th>
<th>Rabbit N=</th>
<th>Sections, total no.</th>
<th>Image no.</th>
<th>No. of CDs</th>
<th>No. of cells</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pendrin+ cells per 100 µm</td>
<td>Cortex</td>
<td>Normal</td>
<td>3</td>
<td>4</td>
<td>23</td>
<td>168</td>
<td>4535</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Acidosis</td>
<td>3</td>
<td>4</td>
<td>27</td>
<td>178</td>
<td>4414</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7-day Acid.</td>
<td>2</td>
<td>4</td>
<td>17</td>
<td>131</td>
<td>3290</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Recovery</td>
<td>3</td>
<td>4</td>
<td>30</td>
<td>213</td>
<td>5646</td>
</tr>
<tr>
<td>AE1+ cells per 100 µm</td>
<td>Cortex</td>
<td>Normal</td>
<td>3</td>
<td>4</td>
<td>30</td>
<td>187</td>
<td>1441</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Acidosis</td>
<td>3</td>
<td>4</td>
<td>28</td>
<td>155</td>
<td>1295</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7-day Acid.</td>
<td>2</td>
<td>4</td>
<td>52</td>
<td>373</td>
<td>5400</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Recovery</td>
<td>3</td>
<td>4</td>
<td>26</td>
<td>189</td>
<td>1611</td>
</tr>
<tr>
<td>AE1+ cells per 100 µm</td>
<td>Medulla</td>
<td>Normal</td>
<td>3</td>
<td>4</td>
<td>18</td>
<td>120</td>
<td>1556</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Acidosis</td>
<td>3</td>
<td>4</td>
<td>15</td>
<td>120</td>
<td>2080</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7-day Acid.</td>
<td>2</td>
<td>4</td>
<td>21</td>
<td>152</td>
<td>3004</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Recovery</td>
<td>3</td>
<td>4</td>
<td>14</td>
<td>69</td>
<td>913</td>
</tr>
<tr>
<td>AQP2+ cells per 100 µm</td>
<td>Cortex</td>
<td>Normal</td>
<td>3</td>
<td>4</td>
<td>34</td>
<td>150</td>
<td>6478</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Acidosis</td>
<td>3</td>
<td>4</td>
<td>23</td>
<td>97</td>
<td>5199</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7-day Acid.</td>
<td>2</td>
<td>4</td>
<td>28</td>
<td>138</td>
<td>7787</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Recovery</td>
<td>3</td>
<td>4</td>
<td>26</td>
<td>88</td>
<td>3663</td>
</tr>
<tr>
<td>AQP2+ cells per 100 µm</td>
<td>Medulla</td>
<td>Normal</td>
<td>3</td>
<td>4</td>
<td>23</td>
<td>172</td>
<td>8538</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Acidosis</td>
<td>3</td>
<td>4</td>
<td>17</td>
<td>159</td>
<td>10,161</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7-day Acid.</td>
<td>2</td>
<td>4</td>
<td>17</td>
<td>139</td>
<td>139</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Recovery</td>
<td>3</td>
<td>4</td>
<td>20</td>
<td>119</td>
<td>119</td>
</tr>
</tbody>
</table>

Abbreviations: Acid., acidosis; AE1, anion exchanger; AQP2, aquaporin 2; CD, collecting duct.
Pendrin mRNA expression is regulated by Acid Base status
H+ and HCO₃⁻ flux
Conclusion

- Pendrin expression level, cap size and number of cells all decreased with acidosis
- Pendrin expression shifted from apical membrane to presumed intracellular pool
- Increased α intercalated cells expressing AE1 to increase H⁺ secretion.
THANK YOU