Urothelial Tumor Initiation Requires Deregulation of Multiple Signaling Pathways: Implications in Target-based Therapies

Haiping Zhou¹, Hong-ying Huang¹, Ellen Shapiro¹, Herbert Lepor¹, William C. Huang¹, Moosa Mohammadi², Ian Mohr³, Moon-shong Tang⁴, Chuanshu Huang⁴ and Xue-Ru Wu¹,⁵,⁶,*

Departments of ¹Urology, ²Pharmacology, ³Microbiology, ⁴Environmental Medicine, and ⁵Pathology, NYU Cancer Institute, New York University School of Medicine, New York, New York 10016; ⁶Veterans Affairs New York Harbor Healthcare System, Manhattan Campus, New York, New York 10010

Running Title: Multi-pathway Defects in Urothelial Tumorigenesis

Key words: bladder cancer, urothelial carcinoma, transgenic mice, oncogene, tumor suppressor gene, targeted therapy

*Send correspondence to:
Dr. Xue-Ru Wu
Department of Urology
New York University School of Medicine
VA Medical Center in Manhattan
423 E23 Street, Room 18064 South
New York, New York 10010
xue-ru.wu@med.nyu.edu

January 28, 2012
ABSTRACT

Although formation of urothelial carcinoma of the bladder (UCB) requires multiple steps and proceeds along divergent pathways, the underlying genetic and molecular determinants for each step and pathway remain undefined. By developing transgenic mice expressing single or combinatorial genetic alterations in urothelium, we demonstrated here that overcoming oncogene-induced compensatory tumor barriers was critical for urothelial tumor initiation. Constitutively active Ha-ras (Ras*) elicited urothelial hyperplasia which was persistent and did not progress to tumors over a 10-month period. This resistance to tumorigenesis coincided with increased expression of p53 and all pRb family proteins. Expression of a Simian virus 40 T antigen (SV40T), which disables p53 and pRb family proteins, in urothelial cells expressing Ras* triggered early-onset, rapidly-growing and high-grade papillary UCB that strongly resembled the human counterpart (pTaG3). Urothelial cells expressing both Ras* and SV40T had defective G1/S checkpoint, elevated Ras-GTPase and hyper-activated AKT-mTOR signaling. Inhibition of the AKT-mTOR pathway with rapamycin significantly reduced the size of high-grade papillary UCB but hyper-activated MAPK. Inhibition of AKT-mTOR, MAPK and STAT3 altogether resulted in much greater tumor reduction and longer survival than did inhibition of AKT-mTOR pathway alone. Our studies provide the first experimental evidence delineating the combinatorial genetic events required for initiating high-grade papillary UCB, a poorly defined and highly challenging clinical entity. Furthermore, they suggest that targeted therapy using a single agent such as rapamycin may not be highly effective in controlling high-grade UCB, and that combination therapy employing inhibitors against multiple targets are more likely to achieve desirable therapeutic outcomes.
INTRODUCTION

Urothelial carcinoma of the bladder (UCB) is the fifth most common cancer globally and the costliest cancer to treat on a per-case basis [1-3]. UCB is not homogenous but consists of subtypes characterized by distinct phenotypes, clinical behaviors and genetic alterations [4-10]. At presentation, 70-75% of the UCB are of low pathological grade, papillary-appearance and confined to the urothelial layer (e.g., pTaG1/2). While these tumors can be initially removed by transurethral resection, they frequently recur, thus requiring additional surgical procedures [11,12]. Low-grade urothelial hyperplasias are believed to be the precursors of these tumors [13,14]. Genetically, mutations of the components of the receptor tyrosine kinase (RTK)/Ras pathway are extremely prevalent in these tumors, with fibroblast growth factor receptor 3b mutated in 45-75% [15-19], Ha-ras in 15-40% [10,16], PI-3-kinase in 25% [20] and Raf-1 in ~7% [21] of the tumors. Because most mutations affecting the different components of this pathway do not co-exist in a given tumor [22], there is a strong reason to believe that mutations of this signaling pathway occur in at least 90% of the low-grade, papillary UCB. Also prevalent in this UCB subtype is the allelic loss of chromosome 9, occurring in over half of the cases [14,23-25].

The second major subtype of UCB accounts for 20-25% of all the UCB and presents as high-grade, invasive tumors (e.g., pT1-4). These tumors often assume a highly aggressive clinical course and, despite radical cystectomy and concurrent chemotherapy, about half of them advance to local and distant metastasis, for which the 5-year survival rate is only 36% and 6%, respectively [26-29]. Patients with high-grade, invasive UCB usually do not have a prior history of low-grade, papillary UCB, and these two tumor subtypes therefore do not appear to be a continuum in tumor progression [4,15,16,30]. Instead, the majority of the high-grade, invasive
UCB are believed to derive from flat, high-grade carcinoma in situ (CIS) or arise de novo [31]. Interestingly, mutations of the RTK/Ras pathway components, which occur in over 90% of the low-grade, papillary UCB, are relatively uncommon (<20%) in the high-grade, invasive UCB. In striking contrast, more than 50% of the high-grade, invasive UCB are associated with mutations and allelic loss of p53 and aberrant expression of retinoblastoma protein (pRb), events that are rare in low-grade, papillary UCB [32-35].

Aside from the two major UCB subtypes, a third, much less well-understood subtype, namely the high-grade, papillary UCB (e.g., pTaG3), has been suggested to exist. Although constituting ~3% of all the UCB, the high-grade papillary UCB presents a major challenge in clinical management [5,36]. Associated with a high risk of progression to invasive UCB, these tumors are often managed with surgical resection plus local Bacillus Calmette-Guérin immunotherapy. When such therapy fails, radical cystectomy is the only remaining option. To date, the few studies that have analyzed the genetic alterations showed that these tumors harbor a significantly greater number of chromosomal abnormalities than the low-grade, papillary UCB, but much fewer chromosomal changes than the high-grade, invasive UCB [6,37]. It remains an open question whether the high-grade, papillary UCB arise de novo or out-grow from the flat CIS lesion or have progressed from low-grade, papillary UCB.

Genetically engineered mice are excellent tools for dissecting the sequential steps of urothelial tumor formation and progression along the divergent phenotypic and genetic pathways. We previously showed that urothelial expression of a constitutively active Ha-ras in transgenic mice could elicit low-grade, papillary UCB that strongly resembled its human counterpart [38]. The tumor induction was, however, highly dependent on gene dosage, as only
homozygous mice bearing two copies of the mutated Ha-ras transgene, but not the heterozygous mice bearing one copy of the same transgene, developed early-onset tumors (before 10 months of age) [38,39]. Between 1-9 months of age, the heterozygous mice had persistent, low-grade urothelial hyperplasias that did not progress nor regress. This raised the possibility that one or more tumor barriers that had been established in response to Ras activation prevented urothelial tumor initiation. In another transgenic model, we showed that low-level expression of a Simian virus 40 large T antigen (SV40T) in urothelium elicited exclusively high-grade lesions that bore strong resemblance to flat CIS in humans [40]. Interestingly, these CIS-like lesions were also persistent without regression or progression until the mice reached beyond 10 months of age, at which point the CIS gradually evolved into high-grade, papillary UCB [41]. Therefore, data from both of these two transgenic models suggest that activated Ha-ras or SV40T alone at low gene dosages were insufficient to trigger early-onset UCB, and that collaborating genetic events are required to initiate UCB.

In the present study, we explored what specific tumor barriers might be present in the urothelial hyperplasias, precursors to the low-grade papillary UCB, in Ha-ras transgenic mice. We tested whether Ras activation, prevalent in human low-grade, papillary UCB, was capable of interacting with deficiencies of p53 and pRb pathways, signatures of high-grade invasive UCB, in urothelial tumor initiation. Additionally, we investigated the key signaling molecules whose activation was associated with urothelial tumor formation. Finally, we evaluated the responses of urothelial tumor cells to therapeutic inhibitors and tested the concept that inhibiting multiple signaling targets had a better therapeutic effect than inhibiting a single target. Results from our studies have major implications on the combinatorial molecular events that are necessary to trigger UCB and the potential and challenges of pharmacological therapy of this disease.
MATERIALS AND METHODS

Single and Double Transgenic Mice

Transgenic mice expressing a constitutively active Ha-ras mutant (codon 61 (Q > L); abbreviated as Ras*) in urothelial cells under the control of a 3.6-kb murine uroplakin II (UPII) promoter were generated previously [38]. A heterozygous, low-copy line (one copy of UPII-Ras* transgene per diploid genome) that reproducibly developed urothelial hyperplasias up to 10 months of age was chosen for this study. Another heterozygous, low-copy transgenic line specifically expressed a Simian virus 40 large T antigen (SV40T) in urothelial cells under the control of the same UPII promoter (UPII-SV40T), and reproducibly developed high-grade, carcinoma in situ throughout the urothelium [40,41]. Both lines were originally produced and had since been maintained in an in-bred, FVB/N background in a specific pathogen-free facility. Seven to eight week-old male and female mice from the two lines were cross-bred to produce double transgenic mice harboring both the UPII-Ras* and the UPII-SV40T transgenes. Identification of single and double transgenic offspring was carried out by Southern blotting of NcoI-digested tail genomic DNAs using a probe situated at the 3'-end of the UPII promoter. The probe allowed the detection of restriction fragments representing the UPII-Ras* transgene (1.7-kb), the UPII-SV40T transgene (2.7-kb) and the endogenous UPII gene (1.4-kb). All animal studies were conducted in accordance with government guidelines and under an active protocol approved by the Institutional Animal Care and Use Committee (IACUC).

RT-PCR and Real-time PCR

The expression of Ras* and/or SV40T in urothelial cells at the mRNA level was verified by RT-PCR. Briefly, urinary bladders freshly dissected out of wild-type, single and double
transgenic mice were inverted inside out and their urothelial cells scrapped off using a chemical weighing spatula. After extraction of total RNA using an RNA extraction kit (Invitrogen), reverse transcription and synthesis of the second strand cDNA were performed and the double-stranded cDNAs were used as a template for PCR. Oligonucleotide primer pairs used were: (i) for Ras* transgene (e.g., rabbit Ras*): forward, 5’-CTAACCAAACCCCTCCTC-3’, and reverse, 5’-ATTCGTCCACGAAGTGGTTC-3’; (ii) for control endogenous Ras (e.g., mouse Ras): forward, 5’-CATGTCTACTGGACATCTTA-3’ and reverse, 5’-TCTTGGCTGATGTTTCAATG-3’; and (iii) for SV40T transgene: forward: 5’-GCAGCTAATGGACCTTCTAGG-3’, and reverse, 5’-GCAATTCTGAAGGAAGGTCTCCT-3’. PCR conditions were: 95°C for 3’ for the first cycle; 94°C for 30”, 55°C for 30” and 72°C for 30” for 35 cycles.

The expression levels of growth inhibitors/tumor suppressors (e.g., p16, p19 and p53) in urothelial cells of 3-4 week old UPII-Ras* transgenic mice were assessed using quantitative Real-time PCR with a QuantiTect SYBR-Green Kit (Qiagen). Oligonucleotide primer pairs used were: (i) for p16: forward, 5’-AGTCCGCTGCAGACAGACTG-3’, and reverse, 5’-CGGGAGAAGGTAGTGGGTC-3’; (ii) for p19: forward, 5’-CTTGGTCAGATGAGTGGGTAGGGTGTGC-3’, and reverse, 5’-CGGGAGAAGGTAGTGGGTC-3’; and (iii) for p53: forward, 5’-CACGTACTCTCTCTCCCTCA-3’, and reverse, 5’-ATTTCCTCTCCACCCGATAC-3’. PCR conditions were: 95°C for 15’ for the first cycle; 95°C for 15”, 55°C to 58°C for 20” and 72°C for 30” for 50 cycles. Amplification of mouse ß–actin was carried out in parallel for each sample and used as an internal reference.

Cell Cycle Distribution
Urinary bladders from 3-week old mice were inverted inside out and the mucosa was incubated in ice-cold phosphate-buffer saline (PBS) containing 1 mg/ml dispase at 4°C overnight. Bladder mucosa was then gently scraped off, washed with PBS and digested with a 0.2% Trypsin-EDTA solution at 37°C for 30’. After centrifugation, the pellet containing urothelial cells were resuspended in fresh Trpsin-EDTA solution and incubated for another 30’. The digestion mixture was supplemented with fetal bovine serum to a final concentration of 20%. The urothelial cells were collected by centrifugation at 800 x g for 5’, washed twice with ice-cold PBS, re-suspended in PBS and filtered through a 100-μM pore-size filter. The cells were then fixed with pre-cooled ethanol at 4°C overnight and stained with a solution containing 40 μg/ml propidium iodide and 100 μg/ml RNase. The stained cells were sorted with Facscan (Beckman), and the data were analyzed by ModFit LT 3.2 software (Verity Software House).

Ras Activity Assay

The Ras activity in urothelial cells derived from the various transgenic strains (n=8/strain) was determined using an in vitro Ras activation assay kit (Millipore). Briefly, urothelial cells were treated with a lysis buffer containing 25 mM HEPES (pH 7.5), 150 mM NaCl, 1% IGEPAL® CA-630 (Sigma), 10 mM MgCl₂, 1 mM EDTA and 2% glycerol, and the protein concentration of total urothelial proteins was determined using a BCA protein assay kit (Pierce). The urothelial proteins were then incubated with a Raf-1-RBD-GST fusion protein (“Raf-1-RBD” represents Ras binding domain of Raf-1 that specifically binds Ras-GTP; GST represents glutathione transferase). The mixture was then added into a glutathione-coated plate. After washing, an anti-pan-Ras antibody was added, followed by a secondary antibody.
conjugated with horseradish peroxidase. After additional washing, the reaction was developed by the addition of 3,3′,5,5′-tetramethylbenzidine (Sigma) and read at 450 nm on a spectrophotometer.

In vivo Administration of Signaling Pathway Inhibitors

All the inhibitors used in this study were administered into the mice via intraperitoneal injection and with one dose every two days. Treatment commenced immediately after the mice were weaned (3 weeks of age), and lasted for 2 weeks in the case of the single-agent rapamycin treatment of rapamycin or for as long as the mice lived for multi-agent treatment to compare survival. All agents were freshly prepared in 50% DMSO in phosphate-buffer saline. Rapamycin (LC Laboratories), a selective mTOR inhibitor [42], was reconstituted to a final concentration of 5 mg/ml and delivered at a dose of 10 mg/kg body weight per injection. UO126 (LC Laboratories), a phosphorylated MAPK inhibitor [43], was reconstituted to a final concentration of 15 mg/ml and delivered at a dose of 30 mg/kg body weight per injection. S3I-201 (Calbiochem), a STAT3 inhibitor [44], was reconstituted to a final concentration of 2.5 mg/ml and delivered at a dose of 5 mg/kg per injection.

Western Blotting Analysis

Western blotting was carried out routinely using as starting material total urothelial proteins prepared in a 20 mM Tris-HCl buffer (pH 7.5) containing 10% SDS, 50 mM NaCl, 5 mM beta-mercaptoethanol and a cocktail of protease inhibitors. Sixty micrograms of proteins per lane were resolved by SDS-PAGE, electrophoretically transferred onto polyvinylidene fluoride membrane and incubated with primary antibodies. After washing, the membrane was further incubated with peroxidase-conjugated secondary antibodies, and then developed using enhanced
chemiluminescence (Amersham Biosciences). The primary antibodies employed were: anti-
gamma-H2Ax, anti-p-AKT (at residue 308), anti-p-AKT (at residue 473), anti-AKT, anti-p-
mTOR (at residue 2448), anti-mTOR, anti-p-S6, anti-p-38, anti-p-MAPK, anti-MAPK, anti-p-
STAT3 (at residue 705), anti-STAT3 (Cell Signaling Technology); anti-pan-Ras (Quality
Biotech); anti-p16, anti-pRb, anti-p107, anti-p130, anti-p53, Anti-CDK4 and anti-CDK6 (Santa
Cruz Biotechnology); anti-p21, anti-PCNA (Abcam). Antibody against beta-actin (Sigma) served
as a loading control for all experiments (1,2).

Histopathology and Immunohistochemistry

Urinary bladders were fixed in PBS-buffered, 10% formalin and processed routinely for
H&E staining for histopathological examination. For antibody labeling, deparaffinized sections
were microwaved at maximal power setting in citrate buffer (pH 6.0) for 20 min for antigen
unmasking, followed by consecutive incubation in solutions containing properly diluted primary
and peroxidase-coupled secondary antibodies. The reactions were developed in a solution
containing 3,3’-diaminobenzidine tetrahydrochloride and hydrogen peroxide. In addition to the
primary antibodies used for Western blotting, the following were also used for
immunohistochemistry: anti-keratin 14 (Covance), anti-pan Ras (Quality Biotech), anti-SV40T
(a gift from Dr. Douglas Hanahan of University of California, San Francisco).

Statistical Analyses

Student’s t-test was used to compare the differences among the experimental groups
using web-based SPSS package. A P value <0.05 was considered statistically significant. For
multi-group comparisons, Mann-Whitney U test was employed using Web-based “Statext”
software. Log-rank test was performed for comparison of the survivals of mice treated with different signal pathway inhibitors using an Internet-based “R” statistical software. Values <0.01 were considered statistically significant.
RESULTS

Presence of Multiple Tumor Barriers in Ras*-elicited Urothelial Hyperplasia

One of the interesting phenomena we observed with our heterozygous UPII-Ras* transgenic mice, which expressed a constitutively active Ha-Ras* oncogene in the urothelium, was the persistence of urothelial hyperplasia. Comprised of conspicuously thickened cell layers with little nuclear atypia and no loss in urothelial polarity (Fig. 1A), these hyperplastic lesions persisted, but failed to advance to tumors over an extended (e.g., 10-month) period. We hypothesized that such a resistance to tumor initiation had to do with a compensatory induction of tumor defense(s) in response to Ras* activation. To test this, we determined the status of several key growth inhibitors/tumor suppressors whose deficiency has been implicated in human urothelial tumorigenesis [45-49]. Using Real-time quantitative RT-PCR, we found the mRNAs encoding p16 and p19, two tumor suppressors operative upstream of pRb and p53 pathways, respectively [50], to be significantly up-regulated in the hyperplastic urothelial cells of the Ras*-transgenic mice, compared to the normal urothelial cells of the wild-type mice (Fig. 1B). p53 expression was also elevated, although the difference between the two groups of mice did not reach statistical significance. Western blotting confirmed that there was indeed a marked induction of p16, p19, p53 and p21 (the latter a transcriptional target of p53) in the Ras*-expressing urothelial cells (Fig. 1C). In addition, these cells over-expressed pRb and its family members, p107 and p130. These data clearly indicated that the transgenic expression of an active Ras* in urothelial cells elicited multiple lines of tumor defenses involving the p53 signaling pathway and the pRb family proteins. They could explain, at least in part, why the Ras*-induced urothelial hyperplasia failed to progress to tumors over an extended period of time.
Rapid Induction of High-grade Urothelial Carcinomas by Additionally Expressing an SV40 Large T Antigen in Ras*-expressing Urothelial Cells

If the tumor suppressors elicited by activated Ras* represented the principal barriers by which the hyperplastic urothelial cells evaded tumors, then disabling these tumor suppressors should in theory overcome these tumor barriers, leading to tumorigenesis. We tested this possibility by expressing an SV40 large T antigen (SV40T) in urothelial cells expressing an activated Ras* via the generation of double transgenic mice. We chose this strategy because SV40T binds to and functionally inactivates p53 as well as the entire pRb family proteins [51], all of which were over-expressed in Ras*-induced urothelial hyperplasia (Fig. 1). Crossing the two transgenic lines yielded 4 major genotypes: (i) wild-type mice, (ii) Ras* single transgenics, (iii) SV40T single transgenics, and (iv) Ras*/SV40T double transgenics (Fig. 2A and 2B). While Ras* and SV40T single transgenics were fully viable and had bladders the sizes of those of the wild-type counterparts, the double transgenics had extremely rapid-growing tumors that occupied the entire bladders that were about 20 times heavier than those of the single transgenics (Fig. 2C and 2D). In the single transgenics, obstructive uropathy and hydronephrosis never occurred before 10 months of age; these abnormalities developed in 100% of the double transgenics by 5-7 weeks of age (Fig. 2C, lower panel; and data not shown). Because of the obstructive uropathy, all the double transgenics succumbed to death by week 9.

Microscopically, the Ras* single transgenics had normal-appearing urothelium at birth which evolved into simple hyperplasia that persisted throughout the 7-week observation period for this cohort (Fig. 3A; The hyperplasia could persist for up to 10 months in cohorts of longer-observation). The SV40T single transgenics exhibited urothelial dysplasia at birth and then high-
grade flat lesions (in distended bladders) that resembled carcinoma in situ between 3-7 weeks of age (Fig. 3A). Nuclear irregularity, pleomorphism, giant nuclei, chromatic condensation and mitotic figures, which were absent in the Ras* single transgenics, were common in the SV40T single transgenics. Consistent with the gross anatomy, neither Ras* nor SV40T single transgenics had any microscopic tumor in the bladder by week 7 in this cohort (and by 10 months in cohorts of longer observation). In stark contrast, the Ras*/SV40T double transgenics began with much thickened dysplastic urothelia/CIS at birth, and tumors emerged quickly by as early as week 3. The tumors were of high pathological grade, with large nuclear/cytoplasmic ratio, frequent mitotic figures, and conspicuous nucleoli. They had a papillary appearance and remained non-invasive by the time the double transgenics died of obstructive uropathy. Serial sections followed by immunohistochemical staining with an antibody against keratin 14, an epithelial marker specific for basal urothelial cells [52], and antibodies against pan Ras and SV40T did not detect any tumor cell breaching the basement membrane (Fig. 3B). These results demonstrated a strong synergistic effect between SV40T and Ras* in initiating high-grade urothelial carcinomas, and suggested that inactivation of both the p53 pathway and pRb family proteins plays a crucial role in allowing activated Ras* to overcome the tumor barriers.

Defective G1/S Checkpoint and Over-activation of Ras-GTPase and AKT-mTOR Pathway in Ras*/SV40T Double Transgenic Mice

The cell-cycle distribution of urothelial cells from each of the 4 mouse strains under study was considerably different. At the steady state, the overwhelming majority of the normal urothelial cells from the wild-type mice were quiescent and partitioned in the G0/G1 phase (Fig. 4A, upper panel). Expression of either Ras* or SV40T in urothelial cells increased the
percentage of S phase cells, albeit only slightly above the normal level. However, expression of both Ras* and SV40T resulted in a dramatic increase in the fraction of S phase cells, which was accompanied by a corresponding rise of S-phase-specific, cyclin-dependent kinases 4 and 6 (Fig. 4A, lower panel). These results suggested that the G1/S checkpoint in Ras*/SV40T-expressing urothelial cells was severely compromised. Urothelial cells expressing SV40T also had lower levels of MDM2, a transcriptional target of p53 and higher levels of E2F1 (Fig. 4A, lower panel), a downstream target of pRb, suggesting that p53 and pRb were both functionally disabled by SV40T. Aneuploid cells, which were absent in normal urothelium, were present in Ras* single transgenics, and even more so in SV40T single transgenic mice and Ras*/SV40T double transgenics. In vitro quantification of Ras-GTPase activity showed a nearly 10-fold increase in the Ras* transgenics over the wild-type control (Fig. 4B). A 3-fold increase of Ras-GTPase activity was also detected in the SV40T single transgenics. This is consistent with earlier observations that SV40T can activate the Ras-GTPase [53-56] and is potentially the basis of why, in the double transgenics, SV40T and Ras* were additive in activating the Ras-GTPase (Fig. 4B, right column). Western blotting and immunohistochemistry (Fig. 4C and D) demonstrated that the Ras*-expressing urothelial cells had a marked activation of MAPK (as evidenced by the significantly increased level of phosphorylated MAPK), but only a slight activation of the AKT and its downstream effectors mTOR, and S6 (as evidenced by the levels of their phosphorylated versions). SV40T-expressing urothelial cells, on the other hand, had only slight activation of MAPK, but a strong activation of the AKT pathway components (Fig. 4C). Finally, urothelial cells expressing both oncogenes had activation in MAPK as well as AKT pathways, again suggesting a collaborative effect.
Inhibition of AKT-mTOR Signaling by Rapamycin Reduced Tumor Size but Hyper-activated the MAPK Pathway

To further examine the role of AKT-mTOR pathway activation in urothelial tumorigenesis and to determine whether inhibition of this pathway was sufficient to control high-grade urothelial carcinomas, we treated the double transgenics with rapamycin, an mTOR inhibitor [42,57]. Three-week old, Ras*/SV40T double transgenics were randomized into two groups (8 mice/group), one group receiving solvent (50% DMSO) only, and another group receiving the solvent containing 5 mg/ml rapamycin, both administered intraperitoneally every two days. Two weeks later, the mice in both groups were sacrificed and their bladder tumors procured. A significant reduction of the tumor size in the treated group as reflected in reduced bladder weights was observed (Fig. 5A). Rapamycin-treated mice had bladder weights of about 0.1 gram, compared to 0.6 gram in untreated mice (Fig. 5A, lower panel). This corresponded well with a significant reduction in the number of tumor cells histologically (Fig. 5B). No significance reduction in the body weights between the two groups was noted (Fig. 5A, lower panel), suggesting that at the dosage and time frame employed, rapamycin had minimum systemic toxicity. Despite the reduction in bladder weights, considerable number of tumor cells remained microscopically in the treated mice (Fig. 5B). Rapamycin also did not reduce the pathological grade of the tumor cells (Fig. 5B)

Molecularly, rapamycin treatment was effective, as expected, in decreasing the levels of phosphorylated mTOR and its downstream effector, S6 (Fig. 5C). It did not affect the upstream acting phosphorylated AKT, suggesting that the rapamycin-mediated effects on AKT may be context- and tumor cell type-dependent [58-62]. Rapamycin, however, was not confined to
inhibiting mTOR, as it completely inhibited phosphorylated p38 as well. This is in agreement with data from other studies involving rapamycin treatment [63,64]. Whether inhibition of S6 led to the inhibition of p38 phosphorylation, as previously suggested [64], remains to be seen.

Nevertheless, phosphorylated STAT3 was unaffected by the treatment. Surprisingly, rapamycin-treated bladder tumors had a marked increase of phosphorylated MAPK, compared to solvent-treated controls (Fig. 5C and 5D). This suggested that AKT-mTOR pathway inhibition by rapamycin could lead to a hyper-activation of another signaling pathway and that, as a single-agent, rapamycin could be ineffective in long-term treatment of certain subtypes of bladder tumors.

Improved Survival via Multi-pathway Inhibition in Mice Bearing Rapid-growing Urothelial Carcinomas

The initial results from the rapamycin experiment prompted us to examine whether inhibition of multiple signaling targets that were activated in the Ras*/SV40T double transgenics would be more efficacious than inhibiting a single target. Because rapamycin led to a marked, compensatory induction of MAPK signaling and because the STAT3 activity was not detectably inhibited by rapamycin, we added to the single agent regimen a specific inhibitor for phosphorylated MAPK (UO126; abbreviated as MAPK-i; [43]), and a specific inhibitor for STAT3 (S3I-201; abbreviated as STAT3-i; [44]). Ras*/SV40T double transgenics were randomized into three groups (8 mice/group) to receive (i) solvent (50% DMSO) only; (ii) solvent containing (5 mg/ml) of rapamycin; and (iii) solvent containing 5 mg/ml of rapamycin, 15 mg/ml of MAPK-i, and 2.5 mg/ml of STAT3-i (Fig. 6A). Intraperitoneal delivery of the agents (every two days) commenced at 3 weeks of age and continued for 4 weeks after which all
animals were sacrificed and their bladders weighed. The bladders of mice receiving the triple agents were significantly smaller and weighed less than those of the single-agent-treated mice (p<0.01) (Fig. 6A). Another cohort comprising the three treatment groups (n=20/group) was then followed to compare the time of survival (Fig. 6B). The untreated mice only survived 63 days, compared to the rapamycin-treated mice which survived 77 days. In contrast, the triple-agent-treated mice survived up to 119 days, an improvement of 42 days over the single-agent group and 56 days (e.g., almost doubling of survival time) over the untreated group (Fig. 6B). The combination therapy, however, did not eradicate the bladder tumors, as all the treated mice eventually succumbed to obstructive uropathy. Western blotting and immunohistochemistry showed that all the three intended targets, e.g., phosphorylated mTOR, MAPK and STAT3, were effectively inhibited (Fig. 6C and 6D). The failure to completely eliminate the tumors in our mice even with the three-agent regimen might therefore have to do the compensatory action of other signaling pathway(s). It might also be due to the fact that the treatment might have not begun soon enough, e.g., at 3 weeks of age when the tumors were already full-blown.
DISCUSSION

Genetic Events Capable of Cooperating with Activated Ras in Initiating UCB

Although mutations of the RTK/Ras pathway components affect an overwhelming majority of low-grade, papillary UCB in humans [10,15-22], experimental evidence is mounting that these mutations alone are insufficient to initiate UCB [65]. In our transgenic mice heterozygous for the mutated Ha-ras transgene, which is expressed in urothelium at a level equivalent to the endogenous wild-type Ras, hyperplasias persist for 10 months [38]. Low-grade UCB only emerge between 11-28 months and in ~60% of the mice. Such a long latency and incomplete penetrance suggests that certain cooperating event(s) must be acquired for the mutated Ras to be tumorigenic. We previously found that loss of both p16Ink4a and p19Arf, known to be synergistic with activated Ras and trigger tumors in several non-urothelial tissues, did not accelerate Ras-mediated urothelial tumorigenesis [39]. Loss of both p53 alleles in mutant Ras-expressing urothelial cells, however, did shorten tumor latency to 3-7 months, although this cooperative effect occurred in only 30% of the animals [66]. Based on data presented here, Ras activation in urothelial cells induces multiple tumor suppressors involving not only the p53 pathway, but the entire pRb family (Fig. 1). Importantly, these compensatory tumor defenses suppress tumorigenesis from the hyperplastic urothelium. Introduction of SV40T, an oncoprotein that functionally disables p53 and all pRb family proteins[51], into mutant Ras-expressing urothelial cells results in 100% of the mice developing UCB in only 3 weeks (Figs. 2 and 3) further supporting this notion. Thus, activated Ha-ras and SV40T-mediated oncogenesis cooperate in urothelial cells and together are sufficient to efficiently convert tumor precursors of the urothelium to UCB.
The dependence of UCB development on cooperation among different oncogenic pathways may not be limited to activated Ras, but may apply to other RTK/Ras pathway components. Thus far, expression of a mutated FGFR3b in transgenic mouse urothelium has not resulted in detectable urothelial hyperplasia, let alone UCB [65,67]. This is somewhat consistent with our earlier study showing that over-expression of an epidermal growth factor receptor (EGFR) in urothelium only led to urothelial hyperplasia but not UCB [68]. Although the presence or absence of urothelial hyperplasia may reflect the level of transgene expression in different transgenic systems, the absence of tumors in FGFR3b and EGFR transgenic mice is consistent. We suggest that, like activated Ras, mutated FGFR3b may require cooperative event(s) to be fully tumorigenic. Because FGFR3b transmits mitogenic signals through Ras [69], it will be of interest to see if the cooperative events for these genes share certain commonalities. Indeed, we previously showed that SV40T was capable of cooperating with over-expressed EGFR in converting SV40T-induced CIS to high-grade, papillary UCB [68]. Whether SV40T has the same effect on mutated FGFR3b remains unknown, and is worthy of exploration.

On a cellular and molecular level, activated Ras and SV40T cooperate in multiple ways to drive urothelial tumorigenesis. First, activated Ras creates significant replicative pressure on urothelial cells, leading to double strand DNA breaks, particularly in common fragile sites [70]. Indeed, the number of apurinic and apyrimidinic sites and the level of histone H2A-x, markers of DNA damage, were both elevated in mutant Ras-induced urothelial hyperplasias (Zhou, H.-P., and Wu, X.-R., unpublished data). In response to the DNA damage, urothelial cells increase the synthesis of p53 which plays a principal role in DNA damage repair [71]. A new damage/repair balance might be reached that allows urothelial hyperplasias to persist without progression (Fig. 1). In the presence of SV40T, however, p53 is functionally impaired (Fig. 4A) and as a result
mutant Ras-caused DNA damage cannot be promptly repaired, leading to increased genome instability. Unchecked genome instability is a prerequisite to tumorigenesis [72,73]. Second, while mutated Ras is a strong mitogenic signal for urothelial cells, the G1/S restriction point in the Ras-expressing cells is intact via the overexpression of wild-type p53 (Fig. 1), which holds urothelial proliferation in check. On the other hand, although SV40T-expressing urothelial cells have a defective G1/S checkpoint, the urothelium remains arrested at a CIS stage due to the absence of a strong mitogenic signal (Fig. 3; [41]). The co-presence of a potent mitogenic signal (mutated Ras) and defective cell-cycle checkpoint (enabled by SV40T) allows for efficient urothelial tumorigenesis. Third, while mutated Ras is known to up-regulate Ras-GTPase, SV40T also has such an effect as shown in Fig. 4B and by others previously [55,56]. The expression of these two genes is therefore additive, if not synergistic, in raising the Ras-GTPase level in the urothelium. Finally, mutant Ras and SV40T cooperate by activating both MAPK and AKT-mTOR pathways (Fig. 4). Mutant Ras alone primarily activated the MAPK pathway, whereas SV40T mainly activated the AKT-mTOR pathway. The latter may be related to the fact that under normal circumstances p53 upregulates PTEN, a potent upstream inhibitor of PI3K-AKT signaling axis [74,75], and that such an inhibitory effect is compromised by SV40T-mediated inactivation of p53 (Fig. 4A). Expression of mutant Ras and SV40T transgenes is therefore necessary to activate both MAPK and AKT-mTOR signaling, consistent with findings in other tumor types [76,77].

Potential Origins of High-grade Papillary UCB

High-grade papillary UCB is a clinically important but biologically enigmatic entity whose cell origin and mode of progression remain uncertain [5,36,37]. The mutant Ras/SV40T
double transgenic mice represent the first experimental model that reproducibly develops this urothelial tumor subtype (Figs. 2 and 3). Because SV40T single transgenic mice develop exclusively CIS lesions (Fig. 3) and the addition of mutant Ras results in high-grade papillary UCB, these tumors could result from CIS lesions acquiring additional growth advantage by mutational activation and/or over-expression of RTK/Ras components. The development of high-grade, papillary tumors by double transgenic mice expressing both SV40T and EGFR supports this scenario [68]. Alternatively, high-grade papillary UCB may reflect the progression of urothelial hyperplasias or low-grade papillary UCB upon acquisition of p53- and pRb-pathway deficiencies. Regardless of its origin(s), high-grade papillary UCB clearly carries a greater risk of progression than low-grade papillary UCB because of its rapid growth rate, large number of genetic alterations and high level of genome instability [5,36,37]. Notably, invasive lesions were not observed in our double transgenic mice, despite serial sections and immunohistochemical examination of multiple bladders from our double transgenic mice (Fig. 3). It is possible that this lack of detectable invasion results from premature death of the mice due to renal failure. One also cannot completely rule out the possibility that molecular events critical for triggering invasion are absent in the mutant Ras/SV40T mice.

Targeted Therapy of UCB: the Effectiveness of Single Agent versus Multiple Agents

The current mainstay for treating high-grade, papillary UCB is local resection followed by intra-vesicle instillation of bacillus Calmette-Guérin (BCG) [5,78]. If tumors are resistant to this treatment modality and progress to the invasive stage, they have to be treated with radical cystectomy, which nonetheless does not assure cure. The limited treatment options for different subtypes of UCB, in particular high-grade tumors, call for new therapeutic strategies. As the molecular details underlying the development and progression of UCB start to be unraveled, it is
more possible than ever to devise targeted therapies for this disease [16]. In the present study, we found that inhibition of mTOR, a downstream effector of AKT, by a two-week course of rapamycin significantly reduces the size of high-grade, papillary UCB (Fig. 5). However, considerable residual tumors exist and consequently the survival of the mice with these tumors did not significantly improve. Molecular analysis revealed a marked induction of activated MAPK in rapamycin-treated tumors (Fig. 5), suggesting this as a possible reason for the ineffectiveness of the single agent therapy. Additionally, compared to the wild-type mouse urothelial cells, those of the transgenic mice particularly the double transgenics had markedly activated STAT3, which was virtually unaffected by rapamycin treatment alone. A combination of three agents was then employed that contained inhibitors specific mTOR, MAPK and STAT3. This led to significantly greater tumor inhibition and longer survival of the treated mice, compared to rapamycin as a single agent (Fig. 6). Our data suggest that a single agent targeting one pathway signal could result in a compensatory activation of another signaling pathway, causing drug resistance, and that sustained tumor control might be achievable through the inhibition of several targets in multiple signaling pathways.

We believe that the principle we have demonstrated with mouse models have significant implications on the rational design of targeted therapies for patients with bladder cancer. Mounting evidence indicates that the PI3K-AKT-mTOR pathway is activated in a sizable portion of human bladder cancer, in particular high-grade and late-stage tumors. One recent study found phosphorylated mTOR and S6 in 74% and 55%, respectively, of muscle-invasive tumors [79]. Activation of this pathway could be mediated by a range of abnormalities in its components including PTEN (e.g., by deletion, mutation or reduced expression), PI3K (by mutation) and AKT (by mutation or increased phosphorylation), all of which have been found in human
bladder cancer [80-82]. It is to no great surprise that exposure of cell lines derived from human bladder cancer to rapamycin or other mTOR inhibitors results in inhibition of cell proliferation in vitro and reduced tumor growth in xenograft models [79,83,84]. Although much less is known about exactly how MAPK or STAT3 activation contributes to bladder cancer development and progression, evidence is emerging that these two signals are also frequently overexpressed and/or activated in human bladder cancer [85-89]. Because of the existence of non-overlapping effects of mTOR, MAPK and STAT3 and the extensive cross-talk among the different pathways, it is conceivable that the effective control of human bladder cancer with targeted therapies would also reply on the inhibition of multiple signaling pathways.
ACKNOWLEDGEMENTS

This study was supported in part by a Merit Review Award from the Veterans Administration’s Research Service and by a grant-in-aid from the Goldstein Fund for Urological Research of the New York University School of Medicine.
REFERENCES

about the current state of bladder cancer: a position paper from the Bladder Cancer Think
Tank, the Bladder Cancer Advocacy Network, and the Society of Urologic Oncology.
Cancer, 115, 4096-103.

Urol, 33, 2-4.

16I, 23-9.

Clin Cancer Res, 4, 829-34.

34. Cordon-Cardo, C., Zhang, Z.F., Dalbagni, G., Drobnjak, M., Charytonowicz, E., Hu,

35. Cote, R.J., Dunn, M.D., Chatterjee, S.J., Stein, J.P., Shi, S.R., Tran, Q.C., Hu, S.X., Xu,
absent pRb expression is associated with bladder cancer progression and has cooperative

and cheese? Carcinogenesis, 27, 361-73.

(2001) Role of Ha-ras activation in superficial papillary pathway of urothelial tumor

Wu, X.R. (2007) Hyperactivation of Ha-ras oncogene, but not Ink4a/Arf deficiency,

expression of an oncogene in transgenic mice induced the formation of carcinoma in situ

41. Cheng, J., Huang, H., Pak, J., Shapiro, E., Sun, T.T., Cordon-Cardo, C., Waldman, F.M.
and Wu, X.R. (2003) Allelic loss of p53 gene is associated with genesis and maintenance,

42. Puzio-Kuter, A.M., Castillo-Martin, M., Kinkade, C.W., Wang, X., Shen, T.H., Matos,

induced replication stress preferentially targets common fragile sites in preneoplastic lesions. A genome-wide study. *Oncogene, 27*, 3256-64.

FIGURE LEGENDS

Figure 1. Induction of key tumor suppressors in “simple urothelial hyperplasia” elicited by constitutively active Ha-ras. (A) H&E-stained cross-sections of bladder urothelia of a 6 month-old wild-type (WT) mouse and five heterozygous UPII/Ha-ras* transgenic mice (1, 2, 4, 6 and 9 months of age) expressing a constitutively active Ras oncogene (Ras*) in the urothelium. Note the persistent urothelial hyperplasia and lack of tumorigenesis irrespective of the age. All panels are 200 x. (B & C) Urothelial responses to hyper-proliferation. Real-time quantitative PCR (B) and Western blotting (C) showing marked induction of tumor suppressor genes including those in the p53 pathway (e.g., p19, p53, p21) and those in the pRb pathway (e.g., p16, pRb, p107, p130). Values were means ± SD. N=8 mice per genotype and per gene analyzed in (B) and N=3 per genotype in (C).

Figure 2. Rapid tumor formation from urothelial cells expressing both Ras* and SV40 large T antigen (SV40T). (A & B) Generation of double transgenic mice expressing both Ras* and SV40T. (A) Genotyping by Southern blotting of a mouse litter showing the generation of (i) single transgenics containing the Ras* transgene (lanes 1, 4 and 7); (ii) single transgenics containing the SV40T transgene (lanes 5, 6 and 9); (iii) double transgenics containing both Ras* and SV40T transgenes (lane 8); and (iv) non-transgenic mice containing neither transgene (lanes 2 and 3). UPII denotes the restrictive-digestion fragment from the endogenous mouse UPII gene. (B) RT-PCR assay of urothelial expression of Ras* and/or SV40T in the various genotypes as shown in (A), establishing that urothelial cells from non-transgenic mice expressed neither Ras* nor SV40T (lanes 1 and 2); those from single transgenics expressed either SV40T (lanes 3 and 4) or Ras* (lanes 5 and 6); and those from double transgenic expressed both (lanes 7 and 8). (C) Gross anatomy of 5-week-old single and double transgenic mice showing that the bladder sizes
of the WT and single transgenic mice were hardly distinguishable and that the bladders of the
double transgenics were profoundly enlarged. (Lower panel): the corresponding kidneys from
these mice, showing the hydronephrosis of a double transgenic mouse. (D) Bladder and body
weights of single and double transgenic mice. While the body weights did not significantly differ
among the different genotypes, the body weights of the double transgenic mice were about 50
fold higher than those of the WT and single transgenics in 7-week old groups. Values were
means ± SD.

Figure 3. Histopathology. (A) Urinary bladders of WT, Ras* and SV40T single transgenic
mice and Ras*/SV40T double transgenic mice of newborn (N/B) and 3, 5 and 7 weeks of age
were sectioned and stained with H&E. Note the normal urothelial morphology in WT mice of all
age groups; simple hyperplasia in Ras* mice; severe dysplasia and carcinoma in situ like lesions
in SV40T mice; and, in contrast, the rapid progression from dysplasia/CIS-like lesions in N/B to
high-grade papillary tumors in Ras*/SV40T double transgenic mice as early as 3 weeks.
Magnification: the left column under Ras*/SV40T, 50 x; all panels, 200 x. (B) Examination of
the basement membrane zone by H&E and antibody staining. Representative images from serial
sections of bladders of 5-6 week-old Ras*/SV40T double transgenic mice were stained with
H&E or with antibodies against keratin 14, pan-Ras or SV40T. Note the absence of tumor cells
beyond the basement membrane.

Figure 4. Altered cell cycle and signaling pathways. (A) Urothelial cells from the transgenic
mice (6 week old; n=3) were subject to fluorescein-activated cell sorting (upper panel) or
Western blotting using anti-CDK4 or anti-CDK6 antibodies (lower panel). Note the marked
increase of S-phase diploid and aneuploid cells in Ras*/SV40T double transgenic mice. (B) Ras-
GTPase assay. In vitro assay of Ras-GTPase was carried out using total urothelial proteins
extracted from the transgenic strains (all 6 weeks of age). Values were means ± SD. Note that the Ras activity was considerably higher in Ras* and Ras*/SV40T mice (n=8 per genotype). (C & D) Western blotting and immunohistochemical detection (anti-p-S6) of signaling pathway components in urothelial cells from the transgenic strains (all 6 weeks of age). Note that the MAPK pathway activation was primarily associated with Ras* activation, whereas AKT-mTOR pathway activation was highly activated in SV40T mice and even more so in Ras*/SV40T mice. All panels in D are 200 x.

Figure 5. Effects of AKT-mTOR pathway inhibition by rapamycin. (A) Three-week-old Ras*/SV40T double transgenic mice were treated with solvent only (NT; n=8)) or that containing rapamycin (n=8) via intraperitoneal delivery every two days for a period of two weeks. Values were means ± SD. Note the dramatic reduction in bladder (tumor) weights in the rapamycin-treated group. (B) H&E-stained bladder cross-sections of un-treated (NT) and rapamycin-treated double transgenic mice showing the reduced tumor size and tumor cell number in mice receiving rapamycin. Magnification: left panels, 50 x; right panels, 100 x. (C & D) Responses of signaling effectors to rapamycin treatment in Ras*/SV40T transgenic mice. (C) Western blotting of urothelial proteins extracted from un-treated (n=3) and rapamycin-treated (n=3) mice. Note the marked inhibition of m-TOR and its downstream effector S6 kinase, the inhibition of p38, the unchanged STAT3 and the significantly elevated phosphorylated MAPK. (D) Immunohistochemical staining of un-treated and rapamycin-treated mice using antibodies against phosphorylated S6 and MAPK showing the inhibition of the former and marked induction of the latter. Magnification: 200 x.

Figure 6. Inhibitory effects of combined inhibitors for mTOR (rapamycin, RP), phosphorylated MAPK (MAPK-i) and phosphorylated STAT3 (STAT3-i). (A) Three-week old,
Ras*/SV40T double transgenic mice (n=8 per group) received solvent only (TG, NT), rapamycin only (RP), or all three inhibitors (RP, MAPK-i and STAT3-i) for 4 weeks before they were sacrificed. Note the three inhibitor combination achieved significantly greater reduction in tumor size than the single agent treatment. Values were means ± SD. P values were calculated using Mann-Whitney U test. (B) Another cohort of three-week old, Ras*/SV40T double transgenic mice (n=20 per group) received solvent only, rapamycin only (RP), or all three inhibitors continuously until the mice died of obstructive uropathy. Longer survival of the mice receiving the three inhibitors than those receiving only one inhibitor was observed. The log-rank p-values were: 0.016 between RP group and solvent group and 1.8×10^{-5} between the three inhibitor group and RP group. (C) Western blotting of urothelial proteins from un-treated, rapamycin-treated and three agent treated mice (n=3 per group) showing the status of signaling effectors. (D) Immunohistochemical staining verifying the results from Western blotting.
Fig. 1

A) Histological images showing tissue samples labeled as WT (wild-type) and Ras* at various time points (1M, 2M, 4M, 6M, 9M).

B) Bar graph comparing the expression levels of p16, p19, and p53 between WT and Ras* samples. The graph shows statistically significant differences ($P<0.01$, $P<0.05$, $P=0.09$).

C) Western blot analysis comparing the expression levels of p16, p19, pRb, p107, p130, p53, p21, and β-actin in WT and Ras* samples.
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6