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Network mechanisms of ongoing brain
activity’s influence on conscious visual
perception

Yuan-hao Wu1,6, Ella Podvalny1,5,6, Max Levinson 1 & Biyu J. He 1,2,3,4

Sensory inputs enter a constantly active brain, whose state is always changing
from one moment to the next. Currently, little is known about how ongoing,
spontaneous brain activity participates in online task processing. We
employed 7 Tesla fMRI and a threshold-level visual perception task to probe
the effects of prestimulus ongoing brain activity on perceptual decision-
making and conscious recognition. Prestimulus activity originating from dis-
tributed brain regions, including visual cortices and regions of the default-
mode and cingulo-opercular networks, exerted a diverse set of effects on the
sensitivity and criterion of conscious recognition, and categorization perfor-
mance. We further elucidate the mechanisms underlying these behavioral
effects, revealing how prestimulus activity modulates multiple aspects of sti-
mulus processing in highly specific and network-dependent manners. These
findings reveal heretofore unknown networkmechanisms underlying ongoing
brain activity’s influence on conscious perception, and may hold implications
for understanding the precise roles of spontaneous activity in other brain
functions.

Spontaneous brain activity is energetically expensive, large in ampli-
tude, and richly organized in its network structure across multiple
spatiotemporal scales1–4. An extensive resting-state fMRI literature has
established the individual specificity and clinical relevance of brain
networks defined by coherent fluctuations of spontaneous brain
activity across brain regions. These networks are stable within an
individual across days and task states5, and their alterations in neu-
ropsychiatric illnesses hold diagnostic and prognostic values6–8. How-
ever, a major unanswered question currently is how such enormous,
constantly ongoing spontaneous brain activity shapes task processing.
Answering this question not only would provide a stronger mechan-
istic foundation for interpreting clinical applications based on resting-
state networks but also would help to build a comprehensive frame-
work for understanding brain mechanisms underlying task functions.

After all, brain functions are not carried out in isolation but in the
context of a constantly active brain, whose state changes from one
moment to the next9.

A line of early fMRI work showed that prestimulus ongoing brain
activity can predict trial-to-trial task performance, including
perception10–12, cognitive control13 and motor output14. However, how
prestimulus brain activity combines with bottom-up sensory input to
shapebehavior remains unknown. This is a nontrivial question because
contrary to initial thinking15, multiple studies have shown that in a vast
majority of cases, prestimulus activity nonlinearly interacts with
stimulus-evoked brain activity instead of linearly add to it16–19. This
observation suggests that spontaneous activity’s impact on behavior
cannot simply be thought of as changing the initial state in, for
instance, a linear evidence-accumulation computation. By contrast,
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spontaneous brain activity likely shapes task processing through
highly interactive and complexmechanisms20,21. This idea is supported
by recent magnetoencephalography (MEG) and monkey neurophy-
siology findings showing that the initial state of the brain, as captured
by the multivariate activity pattern before stimulus input, influences
the trajectory of cortical activity in a high-dimensional state space
following sensory input22,23. However, these studies have either left
unaddressed the brain regions and networks contributing to the initial
state and activity trajectory (due to MEG’s poor spatial resolution) or
narrowly focused on a single brain region (in the case of monkey
neurophysiology). As such, the full extent of ongoing brain activity’s
influences on the behavior investigated as well as the mechanisms
underlying these influences remained unknown.

In the animal literature, the importance of considering presti-
mulus brain states when explaining sensory-evoked activity and the
animal’s behavioral performance has also been increasingly
recognized9,24. Yet, most of the studies in this domain have focused on
brain states that correlate with arousal fluctuations (e.g., as indexed by
pupil diameter, which provides a window into the state of subcortical
arousal systems) or gross behavioral states (e.g., running vs. quies-
cence) e.g., refs. 25–27. As such, how fast, trial-to-trial changes in
prestimulus brain activity impact task processing remains poorly
understood. In the primary visual cortex (V1), studies have shown that
prestimulus neuronal firing rates influence stimulus encoding in the
local post-stimulus activity, as well as detection and discrimination
performance28–31. However, how these findings relate to downstream
neural processing directly underlying behavior and whether presti-
mulus activity in other brain regions, such as higher-order associative
cortices, has similar effects on stimulus-related processing remain
unknown.

In thiswork, we take visual perception as a special case tomount a
systematic investigation of prestimulus ongoing activity’s involvement
in task processing. The powerful influence of spontaneous activity on
perception is vividly demonstrated by cases such as dreams and hal-
lucinations, where internal brain dynamics create compelling perpe-
tual images all by themselves32–34. In addition, it has sometimes been
argued that spontaneous brain activity endows an organism with
autonomy and is crucial to the emergence of conscious awareness35–37.
Thus, understanding the role of ongoing, intrinsic brain dynamics in
perception not only would allow us to attain a deeper and fuller
understanding of how conscious perception arises35,38 but also may
hold clues about what has gone awry in perceptual abnormalities such
as hallucinations39.

To fill this knowledge gap, we employed whole-brain 7 Tesla fMRI
data collectedduring a threshold-level visual object recognition task in
25 healthy subjects (~4 h data collection/subject spread across 2 ses-
sions) to interrogate how prestimulus brain activity from distributed
cortical and subcortical brain regions influence multiple aspects of
perceptual behavior, including the sensitivity and criterion of con-
scious object recognition, and discrimination accuracy in a categor-
ization task. To anticipate our results,we foundadiverse set of impacts
on perceptual behavior by prestimulus ongoing activity originating
from visual cortices and regions of the default-mode network (speci-
fically, ventromedial prefrontal cortex and retrosplenial cortex) and
cingulo-opercular network (specifically, the thalamus and anterior
insula). We further reveal how ongoing activity in each network shapes
different aspects of stimulus-related processing, including the mag-
nitude of evoked activity in cortical and subcortical circuits, its trial-to-
trial variability, and stimulus content encoding. These results offer
detailed mechanistic understanding of how prestimulus ongoing
activity from each network influences perceptual decision-making and
conscious recognition.

Together, our results provide unprecedented insights into how
spontaneous brain activity from distributed brain networks partici-
pates in a set of complex human behavior in the context of conscious

visual perception and may hold implications for understanding how
spontaneous activity facilitates other intricate brain functions.

Results
Paradigm and behavior
Twenty-five human participants performed a threshold-level object
recognition task while their brain activity was recorded by BOLD fMRI
(7 Tesla Siemens scanner). During the task, they viewed images con-
taining real-world objects presented at individually-titrated liminal
contrasts (Fig. 1A). The stimuli set comprised images of four object
categories: faces, animals, houses, andmanmade objects (Fig. 1B, top).
The participant's task was to report the image category and whether
they subjectively recognized the image content. The category report
was via a four-alternative forced-choice question; in trials where the
image was not recognized, participants were instructed to make a
genuine guess. For the recognition question, participants were
instructed to respond “yes” whenever they saw a meaningful object in
the image, even if the object appeared unclear and noisy, but to
respond “no” if they sawnothingor only low-level features suchas lines
or cloud-like abstract patterns. As such, this second question probed
the success or failure of conscious object recognition rather than
conscious detection of low-level image features (for additional details,
see ref. 40), aligning with the established definition in prior studies on
object recognition41–43. Prior to the main task, an adaptive staircasing
procedure was employed to titrate each image’s contrast to reach an
individual participant’s recognition threshold (defined as recognition
report being ~50% “yes”), and the same physically identical image
would be presented on repeated trials during the main task.

Crucially, our stimuli set included both real and scrambled images
(Fig. 1B). Scrambled images were generated by phase-shuffling a ran-
domly selected real image from each category to preserve low-level
features that differ between categorieswhile removing anymeaningful
content, and were presented at the same contrast as the correspond-
ing original image. Participants were not informed about the inclusion
of scrambled images. Scrambled image trials thus served as catch trials
to evaluate the participant’s general tendency to report recognition of
a meaningful content. Accordingly, recognition rates for the real and
scrambled images constituted hit rate (HR) and false alarm rate (FAR),
respectively (Fig. 1C). These two measures were subsequently used to
derive recognition-related criterion (c) and sensitivity (d’) according to
Signal Detection Theory (SDT)44. The behavioral pattern and stimulus-
triggered neural responses related to the success and failure of
recognition were described in detail in a previous paper40. Here, we
briefly summarize key behavioral findings relevant to the pre-
sent study.

On average, participants reported 48.0 ± 2.6% (mean ± SEM) of
the real images as recognized. The recognition rate for real images
(HR) did not differ from the intended rate of 50% (W = 126.5, p =0.34,
two-tailed Wilcoxon signed-rank test), and was significantly higher
(W = 315, p = 4.1 × 10−5) than the recognition rate for scrambled images
(FAR, 28.0 ± 3.1%; Fig. 1D).

As expected, participants’ categorization behaviorwasdependent
on their recognition outcome (Fig. 1E): Categorization accuracy for
recognized real images was generally high (78.8 ± 2.2%) and sig-
nificantly higher than the chance level of 25% (W = 325, p = 2.9 × 10−8,
one-tailed Wilcoxon signed-rank test). When real images were unrec-
ognized, the categorization accuracy dropped to 32.0 ± 1.9% but
remained significantly above the chance level (W = 251, p = 0.002),
consistentwith previous studies showing above-chancediscrimination
accuracy in trials where subjects report a lack of conscious
awareness45–47.

To understand the nature of FAR trials (constituting 28% of
scrambled image trials), in which participants answered “yes” to the
recognition question despite the image input being devoid of any
meaningful content, we analyzed the categorization response patterns
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in these trials. Because the phase scrambling procedure preserved the
statistics of low-level features that differed between image
categories48, we scored the accuracy of the categorization responses
according to the original images used to generate the scrambled
images (e.g., if the participant answered “animal” when the original
imagewas a dog, it was scored as correct). Categorization accuracy for
‘recognized’ scrambled image (false alarm) trials was 61.7 ± 2.8%. It was
significantly higher than that in ‘unrecognized’ scrambled image

(correct rejection) trials (27.7 ± 2.2%, W = 231, p = 5.96 × 10−5), and sig-
nificantly above the chance level (W = 253, p = 3.95 × 10−5). Thus, low-
level features that differed between categories contributed to parti-
cipants’ categorization responses on the false alarm trials, suggesting
that the false alarm responses likely reflect genuine false perceptions
of meaningful content rather than incorrect button presses40.

Based on each participant’s HR and FAR, we then used the SDT
framework44 to compute the recognition (i.e., detection)-related
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Fig. 1 | Experimental paradigm and behavioral results. A Trial structure of the
main object recognition task.B Example real and scrambled (scr) images from each
category. C Schematic of trial types and their classification into behavioral metrics.
C correct, I incorrect, FA false alarm,CRcorrect rejection. Categorization responses
for scrambled images are coded as correct or incorrect according to the category
that the scrambled image was generated from.D Percentage of real and scrambled
image trials reported as recognized, which are equivalent to hit rate (HR) and false
alarm rate (FAR), respectively (n = 25, two-sided Wilcoxon signed-rank test,
***W = 315, p = 4.1 × 10−5). The black dashed line indicates threshold-level recogni-
tion rate (50%). E Left: Categorization accuracy for real images grouped by
recognitionoutcome (yes vs no),which are equivalent tohits andmisses (two-sided
Wilcoxon signed-rank test: ***W = 325, p = 1.2 × 10−5). Right: Categorization accuracy

for scrambled images grouped by recognition outcome (yes vs no), which are
equivalent to false alarms and correct rejections (two-sided Wilcoxon signed-rank
test:W = 231, ***p = 5.96 × 10−5). For scrambled images, the categorization accuracy
was calculated based on the category of the real image from which the scrambled
image was created. The black dashed line indicates chance-level accuracy (25%).
F Criterion (c) and sensitivity (d’) based on the recognition reports (HR and FAR).
A–C Due to copyright limitations, the exact stimuli used in the experiment are not
shown in the figure. The face, house, object, and animal images presented here are
similar examples obtained from http://www.pexels.com. D–F Violin plots display
the shapes of estimated density probability distributions. The gray, horizontal lines
indicate the 25th percentile, median, and 75th percentile. Each circle represents an
individual subject.
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criterion (c) and sensitivity (d’). On average, participants had a con-
servative criterion (c = 0.35 ± 0.07, W = 29, p = 10 × 10−5, two-tailed
Wilcoxon signed-rank test against 0), and a detection sensitivity of
0.63 ± 0.16 (W = 10, p = 2.6 × 10−6) (Fig. 1F). A conservative criterion is
consistent with previous studies on threshold-level perception45,49,50.

Finally, to assess whether perceptual behavior changed over the
course of the experiment, we divided all trials from each participant
into five consecutive time periods and conducted a 1 × 5 repeated-
measures analysis of variance (ANOVA) across participants, for HR,
FAR, c, and d’ respectively. This analysis did not reveal any significant
effects of the presentation order (HR: F4,96 = 1.68, p = 0.16, η2 = 0.02;
FAR: F4,96 = 0.42, p = 0.79, η2 = 0.01; c: F4,96 = 1.18, p =0.32, η2 = 0.01; d’:
F4,96 = 0.32, p =0.86, η2 = 0.01), suggesting that all four metrics
remained relatively stable throughout the experiment (Fig. S1).

Prestimulus activity predicts criterion and sensitivity of
conscious recognition
We first investigated whether prestimulus ongoing activity influences
the criterion and sensitivity of conscious object recognition. To this
end, we analyzed fMRI BOLD signals recorded between −2 and 0 s
relative to the stimulus onset. Because stimulus onset was always
synchronized to the scanner trigger, this amounted to analyzing fMRI
activity recorded in the TR immediately before stimulus onset.
Because BOLD responses can onset within 800ms of stimulus input51,
this approach avoids the possibility of post-stimulus activity on the
same trial contaminating the analyzed prestimulus activity (as com-
pared to the common approach of shifting the BOLD signal backward
in time by ~4 s). We further used a general linear model (GLM) to
regress out task-evoked activity from the BOLD signals (for details, see
Methods) and the residual was used in the analysis of prestimulus
activity. This approach accounted for any lingering activity from the
previous trial, which was already mitigated by the relatively long inter-
trial interval in our experiment (6–20 s).

For each voxel, we fit two linear mixed-effects models (LMMs) to
assess the changes in criterion and sensitivity (defined by recognition
reports, see above) as a function of its prestimulus activity (Fig. 2A, see
Methods for details). The results yielded from the whole-brain analysis
are shown in Fig. 2B, C (displayed at p < 0.05, corrected for familywise
error rate (FWE) at the cluster level with a cluster-defining voxel-wise
threshold of p <0.01).

This analysis revealed significant associations between criterion
(c) and prestimulus activity distributed across multiple regions
(Fig. 2B; MNI coordinates of all significant clusters available in
Table S1). Specifically, we found positive correlations between criter-
ion and prestimulus activity in bilateral visual areas (V3, lateral occi-
pital cortex (LOC), fusiform gyrus (FG), and lingual gyrus (LG)), and in
the ventromedial prefrontal cortex (vmPFC). These results suggest
that observers aremore inclined to report seeing an object, regardless
of whether the image contains one when prestimulus activity in these
brain regions is low. In contrast, we found negative correlations
between criterion and prestimulus activity in the bilateral thalami and
the right anterior insula (aInsula). Both regions are the key nodes of the
cingulo-opercular (CO) network which also includes the dorsal ante-
rior cingulate cortex (dACC)52–54. dACC had a similar trend effect that
did not pass the cluster-correction threshold (Fig. S2). These negative
correlations indicate that observers aremore likely to report seeing an
objectwhen the prestimulus activity in the COnetwork regions is high.

In addition, we found significant positive correlations between
sensitivity (d’) and prestimulus activity in several brain areas, including
two large clusters of voxels located in the vmPFC and retrosplenial
cortex (RSC), with the latter cluster extending into the thalamus, as
well as three relatively small clusters in the left V3, superior parietal
lobule (SPL), and the right LOC (Fig. 2C; see Table S2 for MNI coordi-
nates and Fig. S2 for uncorrected results). These findings indicate that
observers are better at discriminating between real (signal) and

scrambled (noise) images when prestimulus activity in these regions
is high.

To shed more light on these results, we further investigated
prestimulus activity that influenced HR and FAR (Fig. S3, Table S3-4).
We found that higher prestimulus activity in visual areas (V3, LOC,
VTC) resulted in fewer hits (Fig. S3A) and fewer false alarms (Fig. S3B),
consistent with the earlier result showing that higher prestimulus
activity in visual areas results in amore conservative criterion (Fig. 2B).
Interestingly, high prestimulus activity in the CO network (bilateral
thalami, aInsula, ACC) predicted higher hit rates, but hadno significant
effects on false alarms. In contrast, high prestimulus activity in the
vmPFC was primarily associated with lower FAR and largely unrelated
to HR (Fig. S3). These results indicate differential prestimulus
mechanisms underlying the effects on perception in these brain
areas (visual network; CO network; vmPFC), which we will further
probe below.

To quantitatively assess brain regions that carried prestimulus
activity predictive to both sensitivity and criterion, we overlayed the
maps containing significant sensitivity- and criterion-predictive clus-
ters (Fig. S4). Within the vmPFC, the sensitivity- and criterion-
predictive clusters had substantial overlap (572 voxels), accounting
for 55.7% of the sensitivity-predictive and 47.6% of the criterion-
predictive voxels. Moreover, the effects of vmPFC prestimulus activity
on both sensitivity and criterion were the largest across the whole
brain (z = 8.16 for c and z = 6.58 for d’, see Tables S1 and S2). These
results suggest a central and multifaceted role of prestimulus activity
in the vmPFC in shaping conscious object recognition. Since vmPFC is
a key node of the default-mode network (DMN)55, this result reinforces
a series of recent studies showing the involvement of DMN in visual
perceptual tasks40,56–58 and challenging the conventional wisdom of
considering the DMN as a primarily internally-oriented network59,60.

In comparison, we also observed a small overlapping cluster of 55
voxels in the left V3 (Fig. S4). The relatively small size of the overlap
was unsurprising given the finding of a spatially very confined
sensitivity-predictive cluster in the visual network (Fig. 2C).

To validate the observed prestimulus activity’s effects on beha-
vioral outcomes, we conducted analogous whole-brain LMMs using a
different number of trial groups (3 or 7) to identify brain regionswhere
prestimulus activity predicted sensitivity or criterion. As shown in
Fig. S5, the results from these analyses are nearly identical to those
from the original analysis using 5 trial groups (Fig. 2), suggesting the
robustness of ourfindings. Lastly, to control for the potential effects of
headmotion, we employed additional LMMs to evaluate whether head
motionduring the prestimulus period had anypredictive influences on
conscious recognition (see Methods for details). This analysis did not
reveal significant prestimulus head motion effects on any of the
behavioral metrics (HR: χ =0.003, p =0.574; FAR: χ = 0.013, p =0.144;
d’: χ = −0.026, p =0.431; c: χ = −0.023, p = 0.149), rendering head
motion an unlikely confounding factor.

Together, these results reveal a multitude of influences of pres-
timulus ongoing activity on conscious visual recognition, with activity
in the visual and cingulo-opercular networks influencing the criterion
of recognition (but with opposite effects), and activity in vmPFC
influencing both the criterion and sensitivity of conscious recognition.
Below, we investigate the detailed mechanisms underlying these
effects.

Prestimulus activity modulates trial-to-trial variability of
stimulus-evoked response
Our results thus far suggest that prestimulus activity originating from
broadly distributed cortical and subcortical regions exert a diverse set
of effects on conscious object recognition, including its sensitivity and
criterion—two orthogonal aspects of perceptual behavior. A critical
question regards the underlying mechanisms of these modulations:
since conscious recognition directly results from stimulus-related
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Fig. 2 | Prestimulus activity influencing the criterion and sensitivity of recog-
nition, respectively. A Schematic for linear mixed-effect models (LMM) assessing
recognition behavior as a function of prestimulus activity. See methods for details.
B Left: Whole brain statistical maps of prestimulus activity’s influence on criterion.
Statistically significant positive and negative clusters are shown in warm and cool
colors, respectively (n = 25, LMM, thresholded at p <0.05, family-wise error (type I,
FWE) corrected for cluster size, with a cluster-defining threshold (CDT) of p <0.01).
Right: Criterion as a function of the prestimulus activity across voxels within
selected brain regions from the left panel. Red circles represent themean criterion

across subjects at each prestimulus activity level. Gray circles represent individual
subjects. Blue shapes depict the density estimates of the distributions. The pre-
dicted fit of criterion (black line) was estimated based on the mean prestimulus
activity across voxels within the ROI using an LMM. C Same as B, but for sensitivity
(d’)-predictive prestimulus activity. aPCC anterior portion of posterior cingulate
cortex, LOC lateral occipital cortex, vmPFC ventromedial prefrontal cortex, OFC
orbitofrontal cortex, RSC retrosplenial cortex, SPL superior parietal lobule, VTC
ventral temporal cortex. LH/RH left/right hemisphere.
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processing, how does prestimulus activity from these brain regions
modulate stimulus processing differentially to exert a diverse set of
effects on perception?

We addressed this question by assessing how different aspects of
post-stimulus activity, including its trial-to-trial variability, magnitude,
and stimulus encoding, changed as a function of prestimulus activity.
To separately shed light on prestimulus activity modulating the cri-
terion and sensitivity of recognition behavior, we defined four regions
of interest (ROIs, seeMethods for details) based on the analysis shown
in Fig. 2B, C. These ROIs included the vmPFC, visual network (bilateral
V3, LOC, FG, and LG), CO network (bilateral thalamus, right aInsula),
and RSC (for ROI locations, see Fig. S6, left column). The main beha-
vioral effects of prestimulus activity in each ROI are summarized in
Table 1, with vmPFC linked to both d’ and criterion, visual and CO
networks linked to criterion primarily (but in opposite directions), and
RSC linked only to d’.

We first examined how prestimulus activity in each ROI affected
trial-to-trial variability in the post-stimulus activity. To this end, all
trials from each participant were divided into two groups based on
each ROI’s prestimulus activity according to a median split. For each
trial group, we computed the trial-to-trial variability of post-stimulus
activity as the across-trial standard deviation of fMRI BOLD signal
during the two TRs after stimulus onset (0–4 s), using previously
established methods16. We then assessed the differences in standard
deviation between the two trial groups using a whole-brain voxel-wise
contrast, corrected for multiple comparisons using a cluster-
correction procedure (for details, see Methods).

Strikingly, vmPFC prestimulus activity modulated trial-to-trial
variability of post-stimulus activity across widespread brain areas
(Fig. 3A, B). Trial-to-trial variability after stimulus onset in visuomotor
areas as well as frontoparietal decision-making circuits was sig-
nificantly lower when prestimulus vmPFC activity was high. This
inverse relationship between vmPFC prestimulus activity and trial-to-
trial variability in the post-stimulus responses remained largely stable
over the two TRs under investigation. Interestingly, the PCC, a region
strongly reciprocally connected with vmPFC61, was the only brain
region showing enhanced trial-to-trial variability when prestimulus
vmPFC activity was high, and this positive correlation was only evident
in the second TR. Overall, high prestimulus vmPFC activity helped to
stabilize post-stimulus activity across widespread brain areas, mani-
festing as reduced across-trial variability.

In contrast to the widespread vmPFC modulation on trial-to-trial
variability, the influence of prestimulus activity originating from the
visual network was spatially confined to the early visual cortex (EVC)
and high-level visual regions in the ventral temporal cortex (VTC,
Fig. 3C, D). When prestimulus activity in the visual network was high,
trial-to-trial variability of post-stimulus activity in EVC and VTC was
significantly larger. Furthermore, the spatial extent of the effect
increased over time, starting from the EVC and posterior VTC in the
first TR and progressing to more anterior parts of the VTC and
the posterior parietal cortex during the second TR, consistent with the
idea that prestimulus activity in the visual network modulates the
feedforward signal propagation.

The influences of prestimulus activity in the CO network and RSC
weremore isolated in space and time.When prestimulus activity in the
CO network was high, post-stimulus activity in posterior parietal cor-
tex showed increased trial-to-trial variability during the first, but not
the second, TR (Fig. S6C). High prestimulus activity in the RSC pre-
dicted reduced trial-to-trial variability in post-stimulus activity in a
few small clusters, notably ventral visual regions in the second TR
(Fig. S6D).

Because neural activity recorded after stimulus input includes
both ongoing and stimulus-triggered activity (which typically interact
with each other16), we sought to determine whether the effects shown
in Fig. 3 are specific to stimulus-related processing or potentially due
to the effect of ongoing activity in one region on the variability of
ongoing activity in other regions. To this end, we repeated the same
analysis by sorting all trials into two groups based on the prestimulus
activity in each ROI, but instead of investigating trial-to-trial variability
of post-stimulus activity, we tested whether trial-to-trial variability of
prestimulus activity differed between these two groups (e.g., whether
high vs. low prestimulus vmPFC activity predicted trial-to-trial varia-
bility in other regions in the same period). The results of this analysis,
plotted in Fig. S6 (−2–0 s period), show that while there are some
similarities between the prestimulus (−2–0 s) and post-stimulus (0–2
and 2–4 s) periods, there are also substantial differences. Therefore,
although some of the prestimulus activity’s effects on post-stimulus
trial-to-trial variabilitymight be inherited from the prestimulus period,
the majority of the uncovered effects are likely driven by stimulus-
triggered processing.

Did prestimulus activity in vmPFC, visual network, CO network,
and RSC also influence the magnitude of stimulus-evoked responses?
We conducted an additional analysis to address this question (for
details, see Methods). The results from this analysis show that CO
network prestimulus activity significantlymodulated themagnitude of
evoked responses in visuomotor areas, including EVC, VTC, and pre/
post-central gyrus (Fig. S7A). When CO network prestimulus activity
was high, evoked responses in these cortical regions were significantly
lower. In contrast, the influence of prestimulus visual network activity
was centered on basal ganglia structures, including the caudate and
putamen, with high prestimulus visual activity predicting low evoked
responses in these subcortical structures (Fig. S7B). Importantly, like
visuomotor areas, both caudate and putamen are activated in this
task40, suggesting that its activation is lower when prestimulus visual
network activity is high. Interestingly, unlike the prominent mod-
ulatory effects of CO and visual networks, prestimulus activity in
vmPFC and RSC had minimal impacts on the magnitude of evoked
responses.

Taken together, it is of note that in both regions where presti-
mulus activity modulated recognition sensitivity, vmPFC and RSC
(Fig. 2C), prestimulus activity primarily influenced the variability rather
than the magnitude of evoked responses: high prestimulus activity
resulted in reduced variability in post-stimulus responses. This effect
wasmuchmore widespread for vmPFC, consistent with vmPFC having
a larger impactond’ (seeTable S2, z-value in vmPFC: 6.57, inRSC: 3.97).
The reduction in across-trial variability may be a mechanism under-
lying the enhanced recognition sensitivity, a possibility that we will
further investigate below. The fact that vmPFC and RSC’s effects are
spatially distinct may be related to top-down signals from these
regions targeting different brain networks (higher-order networks for
vmPFC and visual regions for RSC62).

By contrast, CO network prestimulus activity primarily influenced
themagnitude rather than variability of evoked responses, with higher
prestimulus activity in the CO network predicting lower visuomotor
activation. Previous work has suggested that the CO network is
involved in maintaining tonic alertness63–65. In line with this idea, our
observation is concordant with previous human and primate findings
that during resting state, heightened arousal (as indicated by

Table 1 | Behavioral effects of highprestimulus activity in each
ROI, summarizing results in Figs. 2 and 5

Behavioral effects
when prestimulus
activity is high

Recognition-
related
criterion (c)

Recognition-
related
sensitivity (d’)

Categorization
accuracy

vmPFC ↑ ↑ –

Visual network ↑ – ↓

CO network ↓ – ↑

RSC – ↑ –
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eye-tracking) is associated with deactivations across widespread cor-
tical networks centered on visuomotor areas66,67. Thus, CO network
prestimulus activity might influence recognition behavior through
arousal-linked mechanisms, a point we will further discuss below.

Intriguingly, despite the robust influence on trial-to-trial varia-
bility in visual regions, prestimulus activity in the visual network was
predominantly associatedwith a criterion effect and had no significant
impact on sensitivity (except for a small cluster in V3). Therefore, a
more conservative criterion under high prestimulus visual network
activity (Fig. 2B) may be due to the downstream network setting a
more conservative criterion when incoming signals are noisier (as
evidenced by high across-trial variability in the feedforward signals).
Importantly, we also observed that high prestimulus visual activity
predicted reduced activation in the basal ganglia, and previous animal
work found that optogenetic activation in basal ganglia causes the
adoption of a more liberal criterion in a visual detection task68. Thus,
the basal ganglia may be the downstream region in the decision-
making network that mediates prestimulus visual network’s influence
on criterion. It is interesting that thenoisier stimulus-related responses
(under high prestimulus visual activity) did not impact recognition
sensitivity; however, as we will show later, higher prestimulus visual
network activity did predispose subjects to have a lower categoriza-
tion accuracy. Thus, the increased variability in the stimulus-related

responses might primarily lie in the population subspace that sepa-
rates different categories instead of in the subspace that separates
signal (real images) from noise (scrambled images).

A shared mechanism underlies vmPFC prestimulus activity’s
impacts on criterion and sensitivity
Our results reveal a central role of vmPFC: Not only did the vmPFC
contain the largest clusters of perceptually relevant prestimulus
activity, which significantly influenced both sensitivity and criterion of
recognition (Fig. 2B, C), but it also stood out as the area with the
strongest impact on both of these behavioralmetrics across the whole
brain (Tables S1 and S2). Could there be a shared mechanism under-
lying vmPFCprestimulus activity’s impacts on sensitivity and criterion?
We hypothesized that the reduction in response variability following
high vmPFC prestimulus activity (Fig. 3A) might contribute to both an
increase in sensitivity and a shift toward amore conservative criterion,
which, if true, would provide such a unified mechanism.

To test this possibility, we conducted a simulation within the SDT
framework (see Methods). Responses to real and scrambled images
were simulated as the internal responses to stimuli containing signal or
pure noise. We generated a dataset consisting of 10,000 simulated
observers. Internal responses to stimuli containing signal or only noise
were sampled from independent, identical Gaussian distributions.
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Trial-to-trial variability was modeled as the standard deviations (σ) of
these two distributions. We then simulated how criterion and sensi-
tivity changed with σwhile keeping themean responses to targets and
nontargets constant. Importantly, since the participants’ HR remained
constant at around 50% throughout the experiment as intended by the
task design and was not affected by the prestimulus vmPFC activity
(Figs. S1 and S3A), the decision boundary (k) that separated the
recognition reports (yes vs no; illustrated by vertical orange lines in
Fig. 4B)was set at themean value of the target distribution for all levels
of σ.

Consistent with our hypothesis, we observed an increased sensi-
tivity and a larger (i.e., more conservative) criterion as the response
variability decreased (Fig. 4A, d’: β = −0.33, p <0.001, c: β = −0.17,
p <0.001). As illustrated in Fig. 4B, despite that the decision boundary
(k) was kept constant at the mean of the target distribution across
different σ levels (equivalent to keeping HR at 0.5), a reduction in σ
resulted in amore conservative criterion. This is because a reduction in
σ led to a decrease in FAR (gray shaded area, β =0.09, p < 0.001),
leading to a more conservative criterion.

Importantly, this simulation shows that a simple reduction in
response variability can lead to the full range of behavioral effects
observed under increased vmPFC prestimulus activity, including
higher d’ and c, lower FAR, and a null findingwithHR (empirical results
in Figs. 2 and S3). These findings thus provide a parsimonious expla-
nation of vmPFC prestimulus activity’s influence on visual recognition,
and support the possibility that its modulation of response variability
may serve as a common mechanism underlying changes in both cri-
terion and sensitivity.

Prestimulus activity modulates stimulus encoding
We next investigated how prestimulus activity influences stimulus
encoding. To this end, we assessed object category information con-
tained in stimulus-evoked activity conditioned on the prestimulus

activity level in a specific ROI (Fig. 5A), using the same four ROIs as
defined before (vmPFC, visual network, CO network, RSC). Impor-
tantly, to avoid bias, logistic regression decoders were trained using
stimulus-evoked responses obtained from an independent object
category localizer conducted in each subject (for details, see Meth-
ods). The trained decoders were then tested on the stimulus-evoked
responses from the main task using a whole-brain searchlight
approach. Becauseprestimulus activity influences recognition rates, to
avoid the potential confound of unequal behavioral performance, the
test set only included recognized real image trials. For each subject,
the test set was split into two halves using a median split based on the
prestimulus activity of the investigated ROI, and decoding accuracy
(obtained from the searchlight analysis) was compared between these
two halves in a whole-brain voxel-wise contrast. In addition, to identify
meaningful differences between trial groups, the trial group with
higher decoding accuracy must also have significantly above-chance
decoding accuracy (for details, see Methods).

The results from this data-driven analysis show that prestimulus
activity in the visual network significantly impacted stimulus encoding
in multiple cortical regions (Fig. 5B). Specifically, low prestimulus
activity in the visual network resulted in better category decoding
accuracy in the bilateral EVC, VTC, and the right frontal cortex
(including middle frontal gyrus and precentral gyrus). There were no
brain regions showing the opposite effect. In addition, no significant
effects were found when the analysis was conditioned on prestimulus
activity from the other three ROIs.

Together, these findings show that prestimulus activity level in the
visual network exerts a significant impact on stimulus encoding in both
sensory and higher-order associative cortices, reinforcing the earlier
interpretation that it shapes bottom-up processing during conscious
object recognition. The widespread influences on stimulus encoding by
prestimulus visual network activity, along with its influence on
recognition-related criterion but not sensitivity, raises the question of

Fig. 4 | Inferring behavioral consequences of reduced response variability
using simulation. A Predicted fit of perceptual behavior metrics based on the
standard deviation (σ) of target and non-target response distributions of the
simulateddata (n = 10,000 simulatedobservers). The circles and errorbars indicate
themeanand standarddeviationacross the simulatedobservers at each σ level. The
predicted fits were estimated using linear regressions. Hit rate: β =0.0001,
p =0.266; False alarm rate: β =0.094, p <0.001; Criterion (c): β = –0.166, p <0.001;
Sensitivity (d’): β = –0.331, p <0.001. Asterisks denote statistical significance at
p <0.05 after FDR correction for multiple comparisons. * denotes statistical sig-
nificance at p <0.05, FDR correction for multiple comparisons. B Changes in
behavioral metrics with a decrease in response variability from σ = 3 (top) to σ’ = 2

(bottom). The curves outlined in green and gray colors represent the distributions
of internal responses to target andnontargets, respectively. Theorange vertical line
indicates the decision boundary (k), which separates the yes and no reports. The
green shaded area represents HR, which remains unchanged across different σ
levels. In contrast, FAR, which is displayed by the gray shaded area, decreases with
decreasing σ. Both criterion (c) and sensitivity (d’) are measured in the standard
deviation (z-score) units (seeMethods). c reflects thedistancebetween thedecision
boundary (k) and the point of intersection between the target and nontarget dis-
tributions (solid gray line). d’ reflects the distance between themeans of target and
nontarget distributions.
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whether prestimulus visual network activity might modulate partici-
pants’ categorization behavior, which we investigate in the next section.

Prestimulus activity modulates categorization behavior
Lastly, we investigated whether prestimulus activity also influences
subjects’ categorization behavior. To this end, we adopted a linear
mixed-effects modeling approach, similar to that used earlier for
assessing prestimulus activity’s influences on recognition behavior.
This analysis was carried out using the four ROIs defined earlier
(vmPFC, visual network, CO network, RSC).

For each participant, all trials were divided into five groups based
on each ROI’s prestimulus activity, and categorization accuracy was
calculated for each trial group. A linear mixed-effects model was then
used to assess prestimulus activity’s influence on categorization
accuracy (see Methods for details). This analysis revealed that cate-
gorization accuracy decreased strongly with prestimulus activity in
the visual network (χ = −0.004, p =0.006) (Fig. 6). By contrast, cate-
gorization accuracy increased strongly with prestimulus activity in the
CO network (χ =0.006, p =0.002). A similar trend was observed in
RSC, but it did not surpass the statistical threshold after correction
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for multiple comparisons (χ = 0.004, p =0.05). Prestimulus
activity in the vmPFC did not influence categorization accuracy
(χ = −0.001, p =0.58).

Given that both the visual and CO network prestimulus activity
correlated significantly with recognition criterion but in opposite
directions (Fig. 2C), similar to their effects on categorization accuracy,
one might predict a significant correlation between categorization
accuracy and criterion. However, recognition criterion and categor-
ization accuracy had no correlation across subjects (r =0.01, p =0.97),
suggesting that the prestimulus activity’s effects on recognition cri-
terion and categorization accuracy were likely independent of
each other.

The inverse relation between visual network prestimulus activity
and categorization accuracy aligns with our earlier finding showing
that low visual network prestimulus activity enhances stimulus pro-
cessing by reducing trial-to-trial variability and improving stimulus
encoding. Interestingly, we also observed a significant positive corre-
lation between the CO network prestimulus activity and subjects’
categorization accuracy, even though we did not observe a significant
effect of CO network prestimulus activity on category decoding (after
correction for multiple comparisons in the whole-brain searchlight
analysis).

Discussion
In sum, this study reveals the network mechanisms underlying ongo-
ing brain activity’s influence on conscious visual perception and per-
ceptual decision-making. Our findings reveal distinct sets of widely
distributed brain regions where prestimulus ongoing activity influ-
ences the sensitivity or shifts the criterion of conscious object recog-
nition, or impacts discrimination accuracy in a categorization task. We
further describe how prestimulus activity modulates multiple aspects
of stimulus-related processing, offering fresh insights into the

mechanisms underlying these behavioral effects. Our key findings are
summarized in Fig. 7 and discussed below.

First, vmPFC, a higher-order brain region that is part of the
default-mode network, was found to play a central role in ongoing
brain activity’s influence on conscious recognition. vmPFC was the
only brain region where prestimulus activity significantly influenced
both sensitivity and criterion; moreover, its impact on either beha-
vioral metrics was larger than that of any other brain region. This is a
notable result given that the role of vmPFC is rarely discussed in the
context of conscious visual perception. Our analyses further shed light
on the potential mechanisms of this finding. We found that high
vmPFC prestimulus activity exerted a stabilizing effect on post-
stimulus brain responses across widespread visual and association
cortices. Furthermore, through an SDT simulation, we demonstrated
that a reduction of response variability can result in both enhanced
sensitivity and a more conservative criterion in the context of
threshold-level perception. These results thus provide a unified
explanation for vmPFC’s strong and multifaceted influences on
recognition behavior, including both sensitivity and criterion.

Second, we found that high prestimulus activity in visual regions
(including V3, LOC, VTC) resulted in a more conservative criterion for
object recognition (with both lower hit rates and lower false alarm
rates), as well as poorer categorization accuracy. These results can be
explainedbyourfindings in thepost-stimulus period: highprestimulus
visual network activity resulted in noisier sensory responses (as evi-
denced by larger trial-to-trial variability), lower activation in the basal
ganglia circuit, and poorer stimulus encoding in both visual and pre-
frontal areas (as evidenced by worse category decoding). Visual net-
work prestimulus activity’s influence on categorization accuracy can
be straightforwardly explained by its modulation of stimulus encod-
ing. Regarding the criterion effect, we believe that a parsimonious
explanation is that downstreamdecision-making circuits adopt amore
conservative criterionwhenbottom-up stimulus-evoked responses are
noisier. Indeed, the observed inverse relationship between prestimu-
lus visual network activity and the magnitude of evoked responses in
the basal ganglia is consistent with this idea, given that the basal
ganglia circuit has been implicated in setting the perceptual decision
criterion and optogenetic activation of basal ganglia triggers a more
liberal criterion in detection tasks68,69. This suggests that the observed
effect of prestimulus visual network activity onbasal ganglia activation
might be the mechanism directly underlying its influence on criterion.
An interesting, unresolved question is why the noisier sensory
responses did not lead to reduced recognition-related d’. One possi-
bility is that the increased response variability primarily lies in the
subspace of population coding that is relevant for category repre-
sentation instead of the dimension that separate signal from noise (as
illustrated in Fig. 7, bottom-left panel); this intriguing possibility
remains to be tested by future studies.

Third, we observed that high prestimulus activity in the cingulo-
opercular (CO) network—specifically, the bilateral thalami and the
right anterior insular—resulted in a more liberal criterion in the
recognition task as well as better categorization accuracy. The main
effect of high prestimulus CO network activity on post-stimulus pro-
cessing was reduced evoked responses in visuomotor regions. These
results are consistent with a postulated role of the CO network in
regulating tonic alertness13,65, a point that we will discuss in
detail below.

Inwhat follows,wediscuss the implications of thesefindings, their
relations to prior work, and questions raised by them.

Our findings suggest that the vmPFC prestimulus activity facil-
itates consciousobject recognitionby stabilizingpost-stimulus evoked
responses—an observation reminiscent of earlier findings on reduced
variability during conscious perception22,70. Considering the vmPFC’s
position at the apex of the cortical hierarchy71, it is plausible to assume
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that this effect involves top-down processing. Among the various
higher-level functions attributed to vmPFC72, we propose that our
vmPFC findings may be related to its role in integrating incoming
sensory inputs with prior knowledge of the sensory environment73.
Indeed, previous studies showed that vmPFC activity reflects prior-
guided stimulus disambiguation in a visual perception task56,74.
Accordingly, one possibility is that the state of high vmPFC excitability
may facilitate the integration of prior knowledge learnt from lifelong
experiences with the sensory input in the service of recognition
behavior. The resulting reduction of trial-to-trial variability may serve
as amechanism that aids in disambiguating environmental signals and
improving information processing efficiency across the cortex17,75,76.
This idea is also compatible with previous work suggesting vmPFC’s
role in generating predictive signals to facilitate the accumulation of
sensory evidence to support object recognition58, as well as vmPFC’s
established role in maintaining schematic information77 and cognitive
map78 in the service of flexible behavior.

Therefore, our vmPFC findings provide potential bridges between
several traditionally separate research fields, including visual recog-
nition, schema, and cognitive maps, as well as predictive processing
which is important in both perceptual and cognitive decision-making.
It is of note that vmPFC’s central role in conscious recognition was
revealed by a data-driven analysis on prestimulus ongoing activity’s
influence on perceptual behavior (e.g., our previous work focused on
post-stimulus activity in this task did not reveal an important role for
vmPFC40). This is consistent with the idea that ongoing activity facil-
itates top-down predictive processing79.

Interestingly, a previousmonkeyneurophysiological studyusing a
threshold-level detection task concluded that prestimulus neuronal
firing rates in the dlPFC predicts detection criterion31. By contrast,
using whole-brain fMRI in humans, we did not find any sensitivity- or
criterion-predictive prestimulus activity in the dlPFC (Fig. 2). Other
than differences in species and recordingmodalities, differences in the
task paradigms likely contributed to this discrepancy. While the
monkeys in that study detected a low-level visual target (circle) pre-
sented in the periphery, in our study human subjects detected the
presence of a meaningful visual content (e.g., a house). Therefore,
these two studies targeted visual detection vs. object recognition,

respectively. In addition, the authorsof ref. 31 suggested that thedlPFC
neurons they recorded fromwere involved in eyemovement planning,
so theymaybe especially relevant for visual detection in the periphery.
By contrast, our stimuli were presented at fovea.

Our findings that low prestimulus activity in the visual network
predicted higher categorization accuracy in the behavioral output and
improved stimulus category encoding in the post-stimulus activity fit
well with recent monkey neurophysiological studies28,29. Recording in
V1, these studies showed that lower prestimulus neuronal firing rates
predict lower correlated variability and sharper tuning after stimulus
input, along with better discrimination performance. In addition, a
recent human intracranial study showed that in high-level visual cor-
tex, lower prestimulus activity, as measured by broadband field
potential power, precedes faster reaction times and better category
encoding in the neural activity80. However, these earlier studies did not
probe conscious recognition or downstream brain mechanisms, and
our findings herein fill in these gaps, by showing that high prestimulus
visual network activity results in noisier feedforward sensory-evoked
responses as well as lower activation in the basal ganglia circuit,
leading to amore conservative criterion during conscious recognition.
In addition, we found that prestimulus visual network activity’s influ-
ence on stimulus encoding extends beyond the visual network to
downstreamdecision-making circuits in the prefrontal cortex, filling in
a missing link between previous neural observations in the visual
cortex and behavior.

A line of human EEG work showed that prestimulus alpha power
primarily influences the criterion but not sensitivity in detection tasks,
with lower prestimulus alpha power predicting a more liberal
criterion50,81–83. On the surface, these results seem contradictory to our
finding of lower prestimulus fMRI activity in the visual network being
associated with a more liberal criterion. This is because high alpha
power in the visual cortex is typically considered to be a state of high
inhibition84. However, a previous monkey study employing simulta-
neous fMRI and local field potential (LFP) recordings showed that
spontaneous fMRI signal is positively correlated with locallymeasured
alpha power in the visual cortex85, suggesting that our result is in fact
consistent with these previous EEG studies. The relationship between
fMRI signal and neurophysiological activity—including LFP in different
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observed a more liberal criterion in the recognition task and enhanced categor-
ization accuracy.
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frequencies and neuronal firing—is highly complex86–88, and the
detailed neurophysiological and circuit-level mechanisms underlying
thesefindings await future investigation usingmethodologies allowing
access to specific circuit elements and neuronal types (e.g., ref. 89).

The CO network regions, including the thalamus and aInsula,
stood out as the only regions exhibiting an inverse relationship
between prestimulus activity and criterion, with high prestimulus
activity leading to amore liberal criterion. (dACC, another key node of
the CO network, had a similar trend effect with criterion, and a sig-
nificant positive correlation with hit rate; see Figs. S2 and S3). In
addition, high prestimulus CO network activity led to enhanced cate-
gorization accuracy. These findings shed light on earlier results
showing that high prestimulus CO network activity facilitates near-
threshold visual, auditory, and somatosensory detection10,11,90, and
suggest that these behavioral effects were likely due to a change in
criterion.

CO network constitutes one of the core cognitive control
systems52 and has been implicated in functions such as task set
maintenance and sustained vigilance54; it overlaps with the salience
network91,92. Importantly, growing evidence supports the role of the
CO network in the maintenance of tonic alertness63–65. A recent
study93 using intracranial EEG showed that spontaneous activations
of the anterior insula precede phasic pupil dilations—a reliable index
of transient increases of arousal9. While our study did notmanipulate
arousal or tonic alertness, in a previous study using the same object
recognition task and concurrent MEG and eye-tracking94, we showed
that pupil-linked arousal fluctuations induce a pattern of perceptual
behavior changes highly similar to the behavioral effects of CO net-
work prestimulus activity observed here (including a more liberal
criterion, higher hit rate, higher categorization accuracy, and no
effect on FAR). Using whole-head MEG decoding, this earlier
experiment also revealed an MEG correlate of pupil-linked arousal in
the low-frequency range, termed the non-content-specific (NCS)
activity95. Higher prestimulus NCS activity predicted a more liberal
criterion on the recognition task with no influence on d’, as well as
enhanced discrimination accuracy (see Fig. 4 in ref. 95)—a pattern of
behavioral effects mirroring those of CO network prestimulus
activity uncovered herein. Therefore, it is tempting to speculate that
the CO network might be the underlying generator of the NCS
spontaneous activity previously discovered—an intriguing possibility
that awaits future investigation.

A limitation of our study is the lack of temporal resolution to
investigate potential dynamic changes and inter-areal communication
in the prestimulus period96–98. Future investigation using intracranial
recordings can help fill this important gap. In addition, while our
findings have illuminated key facets of how prestimulus activity within
distributed brain networks impacts different aspects of perceptual
behavior and their underlying mechanisms, future studies employing
intervention-based techniques such as transcranial magnetic stimula-
tion or intracranial stimulation will allow the direct testing of causal
relationships between the identified prestimulus activity and percep-
tual behavior. In addition, we did not collect respiratory, visceral, or
cardiac signals, whichmight influenceperceptual behavior99,100. Future
research could incorporate these physiological measures to investi-
gate whether they have predictive influences on conscious perception
in the prestimulus period and, if so, what are the involved brain
mechanisms. Finally, in the present study, we have shown how spon-
taneous activity influences post-stimulus processing, which is likely to
contain both the perceptual and decisional processes. Future research
designed to minimize the need for active decision-making, such as
using a no-report paradigm101, can help further disentangle the
mechanisms by which spontaneous brain activity influences percep-
tual and decisional processes, respectively.

In conclusion, our findings reveal the intricate mechanisms gov-
erning the impact of spontaneous brain activity on conscious object

recognition and perceptual decision-making. We uncovered multiple
cortical and subcortical regions whose prestimulus activity selectively
influences different aspects of perceptual behavior, including criter-
ion, sensitivity, and categorization. Our results further illuminate how
prestimulus activity from these distributed brain regions shapes mul-
tiple aspects of stimulus-related processing, providing concrete
mechanistic insights into these behavioral effects. Together, these
findings contribute significantly to building a more comprehensive
framework of the brain mechanisms underlying conscious perception
that considers antecedent factors35,38 and hold implications for
understanding how the prevalent spontaneous activity contributes to
a wide range of complex brain functions.

Methods
Participants
We recruited 38 volunteers (26 females, determined based on self-
report; mean age 27 years, range 20–38 years) to participate in the
fMRI experiment. The study protocol (#15-01323) was approved by the
Institutional Board Review of New YorkUniversity Grossman School of
Medicine, and the experiment was conducted in accordance with the
Declaration of Helsinki. Each participant provided written informed
consent prior to the participation. All participants were right-handed,
neurologically healthy, and had normal or corrected-to-normal vision.
They received monetary compensation for their participation. Ten
participants were excluded due to failing to complete the experiment
and three were removed from data analysis due to poor behavioral
performance, resulting in a final sample size of n = 25 for the analysis.
The dataset analyzed here was previously published in a study that
investigated the neural mechanisms underlying conscious object
recognition in the post-stimulus time interval40. However, the data
from the prestimulus interval analyzed in this study have not been
previously investigated and the research questions addressed in this
study are distinct from those in the earlier publication. Analysis based
on sex or gender was not performed in this study because there were
no sex or gender-specific hypotheses regarding the neural processing
associated with the visual object recognition.

Experimental procedure
The experiment involved two separate scanning sessions, which took
place on two different days. During the first day, participants com-
pleted an image contrast staircase procedure during the anatomical
MRI acquisition, as well as functional localizers. On the second day,
participants performed an 8-min recognition task to confirm the
threshold contrasts obtained on day one. If necessary, we conducted
an additional 8-min staircase session to adjust for threshold
changes across the two days. This was followed by the main object
recognition task.

Visual stimuli
The stimulus set used in this study included five distinct exemplars
from four categories: face, house, man-made object, and animal. The
images were obtained from public domain labeled photographs or
from Psychological Image Collection at Stirling (PICS, http://pics.stir.
ac.uk). The images were resized to 300 × 300 pixels, converted to
grayscale, and their pixel intensities were normalized by subtracting
the mean and dividing by the standard deviation. A two-dimensional
Gaussian kernel with a standard deviation of 1.5 pixels and 7 × 7 pixels
size was applied to each image. Additionally, scrambled images were
generated by shuffling the phase (obtained via 2-D Fourier transform)
of one randomly chosen exemplar from each category, resulting in a
total of 20 real images and 4 scrambled images. The stimuli were
presented using Psychophysics Toolbox (version 3) and MATLAB
(R2017a) via an MRI-compatible screen (BOLDScreen, Cambridge
Research System, 120Hz frame rate) behind the MR scanner’s bore
opening. Participants viewed the stimuli via a mirror attached to the
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MR head coil from a distance of ~210 cm, corresponding to a visual
angle of ~8°.

Before the main task, participants were subjected to an adaptive
staircase procedure “QUEST” to determine the image contrast that
would result in a recognition rate of 50%. A more detailed description
of the procedure is provided in ref. 40, 95.

Main task
Participants completed an object recognition task consisting of 360
trials. Prior to each trial, there was a prestimulus period that lasted
between 6 and 20 s, during which a gray background with a central
fixation cross was presented. The trial started with the presentation of
an image appearing at central fixation for 66.7ms. The image intensity
increased gradually from0.01 to the threshold contrast intensity. After
a delay ranging from 4 to 6 s, participants had to indicate the category
of the presented image within two seconds by pressing a button. If
they did not recognize the object, they were instructed to make a
genuine guess. The stimulus-response mapping was indicated by the
words face/house/object/animal presented in order randomized
across trials. Subsequently, participants were asked to report their
recognition (yes/no). They reported yes if they were able to see
meaningful content, and no if they only see non-identifiable noise
patterns. The main task was divided into 15 runs of ~7.5min each.
During each run, all 24 unique image exemplars (including 5 real and
1 scrambled exemplars for each object category) were presented once
in a randomized order.

Object category localizer
The details of the functional localizer scan have been described in
previous publication40. Briefly, participants viewed the same set of real
images in the main task, but presented at full contrast, and performed
a one-backmemory task. The localizer scan consisted of twenty blocks
of object category presentation. Each block had a duration of 14 s and
consisted of images from a single object category. Images were pre-
sented at a rate of 1 Hz, with a blank screen fixation of 500ms in
between. Participants were instructed to press a buttonwhenever they
noticed an image being presented twice consecutively. Each category
block was repeated five times. The order of presentation was rando-
mized, interspersed with 8 s blank fixation screens.

Behavior analysis
Signal detection theory was applied to describe the recognition
behavior. Hit rate (HR) was calculated as the proportion of real image
trials wherein participants reported seeing an object. The false alarm
rate (FAR) was calculated as the proportion of scrambled image trials
wherein the participants reported seeing an object (even though the
image did not contain an object). Following Macmillan and Kaplan
correction102, extreme values of HR and FAR (1 and 0) were substituted
with 1� 1

2Nreal
and 1

2Nscr
, respectively. Here, Nreal denotes the number of

trials featuring real images, while Nscr represents the number of trials
involving scrambled images. HR and FAR were then used to compute
criterion (c) and sensitivity (d’) as follows:

c= � 1
2
ð Z HRð Þ+ Z FARð Þð Þ ð1Þ

d0 =Z HRð Þ � Z ðFARÞ ð2Þ

where Z is an inverse normal cumulative distribution function.
Furthermore, the categorization accuracy was determined as the

proportion of trials in which participants reported the correct object
category. For scrambled images, the categorization accuracy was
determined based on the category of the original image.

MRI scanning protocol
TheMRI data were collected at the Center of Biomedical Imaging, NYU
Langone, using a 7 T Siemens scanner (Erlangen, Germany) equipped
with a NOVA 32-channel head coil. A T1-weighted structural volume
was obtained for co-registration and spatial normalization purposes
using an MPRAGE sequence with a voxel size of 1 × 1 × 1mm³, FOV of
256× 256mm², 176 slices, TR of 3000ms, TE of 4.49ms, and flip angle
of 6°. Functional volumeswereobtainedusing a T2*-weighted gradient
echo-planar imaging (EPI) sequence that covered the whole brain
(2 × 2 × 2mm³, 0.2mm gap, 54 slices, FOV = 192 × 192mm², TR of
2000ms, TE= 25ms, flip angle = 50°, acceleration factor/GRAPPA= 2,
multi-band factor 2). 227 volumes were obtained on each run of the
main task and 221 volumes for the object localizer. Both the stimulus
onsets in the main task as well as the presentation block onsets were
temporally locked to the onset of volume acquisition.

fMRI preprocessing
The fMRI data were preprocessed using the FSL software package
(version 5.0.10, http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FSL). The EPIs were
spatially realigned to themean of the corresponding run using the six-
parameter rigid body transformation to account for head motion.
Time differences in slice acquisition were corrected, and the EPIs were
coregistered to the participant’s individual structural volume. Spatial
smoothing was applied using a 3mm and 4mm full width at half
maximum (FWHM) Gaussian kernel for the main task and functional
localizer, respectively. Independent component analysis was
employed to detect and eliminate artifacts caused bymotion, arteries,
or CSF pulsation. Finally, subject-level data were normalized to the
Montreal Neurological Institute coordinate system (MNI) before being
included in the analysis.

Linear mixed-effects models (LMM)
In order to minimize the potential effects of sensory and motor
responses on the prestimulus baseline data we first employed the
general linear models (GLM) approach, implemented in FSL FEAT
(fMRI expert analysis tool). A highpassfilter with a cut-off frequency of
150 s was applied to remove slow drifts in the fMRI time series. In
addition, prewhitening as implemented in the FSL FILMwas performed
to account for temporal autocorrelation in the data. For each run and
participant, the preprocessed data were modeled with 17 predictors
accounting for effects related to visual stimuli from 16 conditions
(4 object categories ×2 image types ×2 recognition reports) andmotor
responses. These regressors were aligned to the onset of visual stimuli
and onset of questions, respectively, and were each convolved with a
gamma-shaped hemodynamic response function at the onsets of the
respective events (half-width of 3 s and lag of 6 s). The resulting resi-
duals corresponding to −2 to 0 s (1 TR) prior stimulus onsets, which
were devoid of stimulus- and motor-related effects, were used as a
proxy of spontaneous prestimulus activity. For each participant, resi-
dual maps corresponding to individual trials were spatially smoothed
with a 5mm FWHM Gaussian filter.

To examine whether recognition behavior changes with the
amplitude of prestimulus spontaneous activity, we used LMMs as
implemented in the stasmodels package (0.14.0)103 in Python (version
3.8). For each voxel in each participant, trials were sorted into five
groups based on the quintiles of their residual amplitude distribution.
Four behavioral metrics (HR, FAR, d’, and c) were computed for each
trial group. The LMM included fixed effects for the trial group and
intercept while treating participants as a random effect on the inter-
cepts. The model was defined as follows:

Behaviori,G ∼ χ � G+ χ0 + γi � G+ γ0i + εi,G ð3Þ

In this model, χ denotes the fixed effect parameters that were
shared by all participants, γi represents the random effects parameter
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for participant i, and G represents the trial group (1–5) which the
behavioral metrics were calculated for.

For each recognition behavior, the described model was fit to
participants’ data at each voxel, yielding a whole-brain coefficient map
that indicated the strength of each voxel’s prestimulus activity’s
influence on the specific variable of interest. A coefficient bigger than
zero (χ > 0) at a specific voxel indicates that the behavioral metric
increases with prestimulus activity in that voxel. A coefficient smaller
than zero (χ < 0) suggests an inverse relation between prestimulus
activity and the behavioral metric. The whole-brainmapwas subjected
to a cluster-level inference using theGaussianRandomField Theory, as
implemented in FSL. We reported significant voxel clusters at p <0.05,
corrected for familywise error rate (FWE) at the cluster level with an
initial cluster-defining voxel-wise threshold of p <0.01.

For the analysis on categorization behavior, we used anROI-based
approach. For each participant, all trials were divided into five groups
based on each voxel’s prestimulus activity amplitude within a specific
ROI, and categorization accuracy was calculated for each trial group.
We then computed the mean categorization accuracy across voxels
within each ROI, separately for each trial group. We then constructed
an LMMmodel with the same parameters as described above to assess
whether categorization accuracy was dependent on prestimulus
activity in that ROI. The ROI-based analysis was separately conducted
on four ROIs (see below). Statistical significance was reported at
p <0.05, FDR corrected across ROIs.

Additional LMMswereconducted to examine the potential effects
of head motions during the prestimulus period on aspects of recog-
nition behavior, including HR, FAR, d’, and c. The relative framewise
displacement between the two functional volumes preceding the sti-
mulus onset, as output by FSL MCFLIRT, was utilized as an index to
quantify themagnitude of headmotion during the prestimulus period.
This metric serves as an estimate of the extent to which the head
position during the prestimulus timeperiodof interest (−1 TR,−2 to0 s
prior to stimulus onset) deviated relative to the head position during
the preceding TR (−4 to −2 s prior to stimulus onset). Following the
LMM approach described earlier, trials were categorized into five
groups based on the magnitude of the head motion during the pres-
timulus period, and behavioral metrics for each trial group were
computed. Subsequently, LMMs were fit to examine whether the
behavioral metrics changed as a function of prestimulus head motion
magnitude.

Definition of regions of interest
Four regions of interest (ROIs) were defined based on statistically
significant criterion- and sensitivity-predictive clusters obtained from
LMMs (Fig. 2, cluster-corrected p <0.05). The vmPFC ROI was defined
as the union of the criterion- and sensitivity-predictive clusters in the
vmPFC and included a total of 1676 voxels. The CO network ROI
encompassed voxel clusters that showed an inverse relation with the
criterion and intersected with the salience network from the resting
state network (RSN) parcellation104 as well as the thalamus region from
the 64-dimensional Dictionary of Functional Modes Atlas105 (DiFuMo,
region 47) and consisted of 762 voxels. The visual network ROI inclu-
ded criterion- and sensitivity-predictive clusters that intersect with the
visual network from the RSN parcellation (1568 voxels). Lastly, the RSC
was defined as the intersection of sensitivity-predictive clusters and
RSC (region 111) from the 256-dimensional DiFuMo (146 voxels).

Trial-to-trial variability analysis
For each subject, we extracted fMRI data recorded at the last TRbefore
and the first two TRs after each stimulus onset. Since TRs were time-
locked to the stimulus onsets, the extracteddata corresponded to data
recorded between −2 and 4 s relative to stimulus onsets. fMRI data
were divided into two groups based on the prestimulus activity
amplitude in a specific seed ROI, resulting in two trial groups

corresponding to high and low prestimulus activity trials. For each
voxel at each TR in each trial group, we calculated the standard
deviation across all trials and used it as a measure of trial-to-trial
variability. This resulted in a whole-brain standard deviation map for
each TR and trial group. Tomake group inference on the difference in
trial-to-trial variability between high and low prestimulus activity trials
at a givenTR, subject-level whole-brainmaps corresponding to the two
trial groups were compared using a paired-sample t-contrast across
the whole brain. Prior to the group inference, whole-brain maps were
spatially smoothed with a 2mm FWHM Gaussian kernel. This analysis
procedure was repeated for each seed ROI. Statistical significance was
reported at p <0.05, corrected at cluster level for multiple compar-
isons with an initial cluster-defining voxel-wise threshold of p <0.01.

Stimulus-triggered responses conditioned by prestimulus
activity
For each subject, fMRI data acquired from each run were divided into
two trial groups based on the prestimulus activity amplitude in a
specific ROI and fed into a GLM (150 s high-pass filter) using FSL Feat.
We included two regressors to model brain responses to the visual
stimuli from the two trial groups, each aligned to stimulus onsets. A
third regressor was included in the GLM to account for motor
responses andwasaligned to theonset of eachquestion in each trial. In
addition, we incorporated nuisance regressors, comprising six move-
ment parameters as well as the mean signals in the white matter and
cerebrospinal fluid, as identified by FSL FAST with cut-off threshold of
0.9. All regressors were convolved with a gamma-shaped hemody-
namic response function.

For each subject, we computed a contrast estimate between
parameter estimates corresponding to high and low prestimulus
activity trials in each run. The resulting contrast estimates were aver-
aged across runs, yielding a mean contrast estimate per subject. To
assess group-level effects, subject-level contrast estimates were tested
against zero using a two-tailed t-contrast in FSL FLAME1. Cluster
inference was performed using Gaussian Random Field Theory. We
reported significant clusters at p <0.05, with an initial cluster defining
threshold of p <0.01.

Category decoding
Whole-brain searchlight decoding analysis was performed to assess
whether the amount of category-related information in any brain
region changes with the prestimulus activity level of each specific ROI.

The decoding models were trained using category localizer data,
independently of the main task data which were used to test the
models. The training data consisted of parameter estimates obtained
from GLM applied to the object category localizer data. Each of the 20
object category presentation blocks was modeled separately with a
predictor convolved with a gamma-shaped HRF. This resulted in five
parameter estimate maps for each object category, serving as training
samples in the decoding analysis.

The test set comprised main task data obtained from trials cor-
responding to a specific prestimulus activity level of a specific ROI. To
this end, trials were median split into two groups according to the
meanprestimulus activity amplitude across voxelswithin theROI.Data
obtained from each run were subjected to a GLM comprising pre-
dictors for all possible combinations between prestimulus activity
level (high/low), recognition report (yes/no), and real image categories
(face/house/animal/object). In addition, scrambled images and motor
responsesweremodeledwith separate predictors, yielding a total of 18
predictors. All predictors were convolved with gamma-shaped hemo-
dynamic response functions at the onsets of the respective events.
Parameter estimates for recognized real image categories from a
specific prestimulus activity level were tested for accuracy of category
prediction using the searchlight decoding models trained on the
independent localizer data.
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Searchlight decoding was performed on subject-level data using
logistic regression models (c = 1) as implemented in the nilearn
(0.9.2) scikit-learn (1.3.0)106 package. We employed a 6-mm radius
spherical searchlight and moved it voxel-by-voxel through the entire
brain. At each voxel location, the decoder was trained to distinguish
between object categories based on the patterns of BOLD responses
within the searchlight during the functional localizer scan. The
decoder was subsequently applied to response patterns corre-
sponding to a specific prestimulus activity level in the main task. The
decoders’ prediction performance was evaluated using balanced
decoding accuracy. This process was repeated for each voxel in each
prestimulus activity level.

To perform group-level inference, we compared subject-level
accuracy maps obtained from the two trial groups using a two-
tailed paired t-test. The resulting statistical maps were subjected
to a cluster-level inference using Gaussian Random Field Theory.
The cluster significant threshold was set at p < 0.05 (two-tailed)
with a cluster-defining threshold at p < 0.01. To avoid spurious
findings, only voxels showing statistically significant above-
chance decoding accuracy (chance level: 25%) at an uncorrected
p-value of <0.05 in at least one of the trial groups were incor-
porated into the final result.

SDT simulation
To simulate how trial-to-trial variability influences the criterion and
sensitivity, we conducted simulations using the SDT framework. To
begin with, we generated a data set consisting of 10,000 observers,
each completing 5000 trials of a recognition task with yes/no
responses (2500 trials for each response outcome). To approximate
the perceptual behavior observed in the empirical data, the internal
response to target (representing real images) and nontarget (repre-
senting scrambled images) stimuli were drawn from two independent
identical Gaussian distributions with a mean (μ) of 2 and 0, respec-
tively. The standard deviation of the Gaussian distribution (σ) was set
to 3 for both target andnontarget stimuli. Toalignwith the individually
titrated HR of 0.5 that was observed throughout the study (see Results
section and Fig. S1), the decision boundary that separated the recog-
nition reports (yes vs no) was positioned at the mean value of the
target distribution. The chosen simulation parameters produced
highly similar behavior metrics (c: 0.33, d’: 0.67) as in the empirical
data (c: 0.35, d’: 0.63).

We then repeated the simulations with decreasing standard
deviations (σ). The values of σ for both target and non-target dis-
tributions varied between 3 and 2 in steps of 0.2, while their means
(μ) remained unchanged. Since the HR was unaffected by the
prestimulus vmPFC activity in the empirical data, the decision
boundary was kept constant at the mean value of the target dis-
tribution across all σ levels.

We assessed the effect of trial-to-trial variability on each of the
behavioral metrics using linear regression. A positive regression
coefficient (β > 0) indicates a given behavioral metric increases
with increasing response variability, while a negative regression
coefficient (β < 0) indicates an inverse relation. We reported sta-
tistical significance at p < 0.05 (FDR corrected for multiple
comparisons).

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
This paper consists of analysis of previously published data. Unthre-
sholded statisticalmaps generated in this study are available at https://
neurovault.org/collections/17373/. Source data are provided with
this paper.

Code availability
We used publicly available open-source software toolboxes and cus-
tom scriptswritten in Python to analyzeour data. Code supporting this
study is available at a dedicatedGithub repository: https://github.com/
BiyuHeLab/NatCommun_Wu2024
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