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A dual role of prestimulus spontaneous neural
activity in visual object recognition
Ella Podvalny 1, Matthew W. Flounders 1, Leana E. King1, Tom Holroyd2 & Biyu J. He 1,3

Vision relies on both specific knowledge of visual attributes, such as object categories, and

general brain states, such as those reflecting arousal. We hypothesized that these phe-

nomena independently influence recognition of forthcoming stimuli through distinct pro-

cesses reflected in spontaneous neural activity. Here, we recorded magnetoencephalographic

(MEG) activity in participants (N= 24) who viewed images of objects presented at recog-

nition threshold. Using multivariate analysis applied to sensor-level activity patterns recorded

before stimulus presentation, we identified two neural processes influencing subsequent

subjective recognition: a general process, which disregards stimulus category and correlates

with pupil size, and a specific process, which facilitates category-specific recognition. The two

processes are doubly-dissociable: the general process correlates with changes in criterion but

not in sensitivity, whereas the specific process correlates with changes in sensitivity but not

in criterion. Our findings reveal distinct mechanisms of how spontaneous neural activity

influences perception and provide a framework to integrate previous findings.
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Perception does not rely on sensory input alone, but is also
informed by previously acquired knowledge of sensory
environment. For example, object recognition—that is,

experiencing a percept of an object from physical properties of
the stimulus projected to the retina—is informed by knowledge of
object categories, which is supported by dedicated anatomical
structures (for reviews see Grill-Spector and Weiner1; Logothetis
and Sheinberg2). Previous sensory experience shapes these ana-
tomical structures3,4 and, consequently, modulates the neural
activity these structures support5,6. Furthermore, dynamic
content-specific information about previously experienced sen-
sory environment was observed in neural activity even in the
absence of sensory input7–11. An intriguing hypothesis suggests
that such information provides continuous expectations about the
content of forthcoming sensory stimuli7,9,12,13. However, it is
currently unknown whether content-specific spontaneous neural
activity plays a role in perception or, alternatively, is a mere
byproduct of the underlying anatomical structure with no func-
tional consequence.

In a separate vein, neuromodulatory systems, which regulate
general arousal state, influence both the neural representation of
sensory stimuli14–16 and perceptual decisions about these
stimuli17,18. Such regulation is associated with modulation of
large-scale spontaneous brain activity19–21. Thus, spontaneous
neural activity may also influence object recognition in a non-
content-specific manner.

Research that has previously examined the influence of spon-
taneous activity on visual perception (e.g.22–25) has typically not
tested whether such influence is content-specific or not. It has
been shown that perception of ambiguous bistable images (such
as Rubin’s face-vase illusion) is biased by pre-stimulus activity in
category-selective visual regions26, but such biases were not tested
in their ability to facilitate perceptual processing. Therefore, it
remains unknown whether and how different processes existing
in spontaneous neural activity—content-specific fluctuations
constrained by local anatomical structure vs. non-content-specific
fluctuations of global arousal—influence perception of forth-
coming stimuli.

We hypothesized that object recognition can be influenced by
two complementary spontaneous neural processes acting
according to: (1) General model: pre-stimulus brain states influ-
ence recognition of a forthcoming stimulus regardless of the
stimulus content; and (2) Specific model: pre-stimulus brain
states facilitate recognition in a category-specific manner, such
that each object category is associated with a pre-stimulus brain
state that is optimal for recognizing that particular category (see
illustration in Fig. 1a and Methods). We report evidence sup-
porting the existence of two distinct spontaneous neural processes
behaving according to the General and Specific models. Fur-
thermore, we observe a double dissociation in the effects of these
two processes on subjects’ recognition behavior as characterized
by signal detection theory, suggesting distinct mechanisms uti-
lized by these two spontaneous processes.

Results
Paradigm and behavior. In order to understand the influence of
pre-stimulus neural activity on visual object recognition, we
designed an experimental paradigm where object stimuli are
presented at the threshold of subjective recognition. To this end,
we conducted an adaptive thresholding procedure, whereby
image contrast was titrated to reach a 50% subjective recognition
rate for each subject (see Fig. 1d and Methods). In order to cal-
culate the subjective recognition rate, the subjects were instructed
to report whether they see an object (“yes”/”no”), such that even
if the object appears unclear or noisy they should respond “yes”,

but if they see nothing or only low-level features, such as lines or
cloud-like abstract patterns, they should respond “no”. The pre-
sent paradigm is analogous to threshold-level visual detection
tasks using simple low-level stimuli25,27,28, but with important
differences in stimulus type (Gabor patches vs. objects) and the
definition of threshold (stimulus visibility vs. object recognition).
We did not use a mask to render the stimulus invisible29–31

because the mechanism of masking involves disruption of sti-
mulus processing and thus may “mask” the influence of pre-
stimulus activity32.

Stimuli included four common visual object categories: faces,
animals, houses and manmade objects (Fig. 1c). Participants’ task
was to report the category of an image presented and their
recognition experience (yes/no, Fig. 1b). They were instructed to
report the object category regardless of their recognition
experience and, in cases of unrecognized images, to make a
genuine guess (four-alternative choice discrimination). The
stimulus set included real and scrambled images, where the
scrambled images were created by phase-shuffling a randomly
chosen real image from each category to preserve category-
specific low-level image features (see Methods). Because
scrambled images did not include an object stimulus, they were
used as “catch trials” to determine the subjects’ baseline tendency
to give positive responses to a question about their recognition
experience. Each object category included five unique real images
and one scrambled image and each image was repeated 15 times
across the experiment. The pre-stimulus interval varied randomly
from trial to trial between 3 and 6 s in order to prevent stimulus
timing predictability and the stimuli were presented in a
randomized order to prevent category predictability.

Participants reported 44.9 ± 3.5% (mean ± s.e.m., N= 24) of
real images as recognized (i.e., percentage of “yes” reports), which
did not differ from the intended recognition rate of 50% (Fig. 1e,
Wilcoxon signed-rank test, p= 0.2). The recognition rate of
scrambled images was 17.2 ± 3.3%, significantly below the
recognition rate of real images (Fig. 1e, Wilcoxon signed-rank
test, p= 1.8 × 10−5) and significantly above zero (Wilcoxon
signed-rank test, p= 4.0 × 10−5). The subjects were instructed to
reply positively to a question about their recognition experience
only if they could detect an object in the stimulus presented;
therefore, a “yes” report of a scrambled image constitutes a “False
Alarm” (Fig. 1d). There are two possible interpretations of the
significant False Alarm rate: (1) the subject perceived an object
even though no object was present, and (2) the subject did not
actually perceive an object but pressed a wrong report button,
either by accident or because they forgot what they saw. The
report of recognition experience is inherently subjective; there-
fore, we cannot discern between these two possibilities.

We also examined the effect of trial history on subjective
recognition rate. First, we found that a “yes” report on a previous
trial (as compared to a “no” report) correlates with an increase of
7.2 ± 1.6% in subjective recognition rate (Supplementary Fig. 1b,
Wilcoxon signed-rank test, p= 8.3 × 10−4). Similar, but weaker,
effect of 4.1 ± 1.3% increase in recognition rate was found for two
trials back (Wilcoxon signed-rank test, p= 6.6 × 10−3) but not
further (Wilcoxon signed-rank test, p > 0.05 for 3, 4, and 5 trials
back). Second, we examined the effect of the objective stimulus
category in the previous trial on subjective recognition rate. We
found that having two subsequent trials of the same (as compared
to different) objective stimulus category does not influence
subjective recognition rate (Supplementary Fig. 1c, Wilcoxon
signed-rank test, p= 0.98).

We used signal detection theory (SDT)33 approach to
characterize the recognition decision criterion (i.e., tendency to
report “yes” regardless of whether a real or scrambled image is
presented) and recognition sensitivity (i.e., estimated distance
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between distributions of sensory representations for real and
scrambled images). The subjects’ recognition reports had
significant sensitivity (d′= 1.02 ± 0.11, Wilcoxon signed-rank
test, p= 1.8 × 10−5) and a positive (i.e., conservative) decision
criterion (c= 0.66 ± 0.11, Wilcoxon signed-rank test, p= 10−4),
in line with previous studies27,28,34,35. We will later describe how
these two components of object recognition behavior are
influenced by pre-stimulus brain states.

We next characterized categorization behavior in recognized
and unrecognized trials. The categorization accuracy of real
images was 86.5 ± 1.8% in recognized trials and 40.1 ± 1.8% in
unrecognized trials, which were significantly different (p= 1.8 ×
10−5, N= 24, Wilcoxon signed-rank test, Fig. 1f and Supple-
mentary Fig. 1a). Consistent with previous studies28,36,37,
categorization accuracy in unrecognized trials was still signifi-
cantly above the chance level of 25% (p= 1.8 × 10−5, N= 24,
Wilcoxon signed-rank test). We observed a similar trend in trials
in which scrambled images were shown: first, categorization
accuracy was 51.9 ± 4.7% in recognized and 31.6 ± 1.9% in

unrecognized trials, significantly above chance in both groups
(Wilcoxon signed-rank test, p= 1.2 × 10−3 and p= 7.6 × 10−3,
respectively), suggesting that low-level image features that are
distinct between categories38 contribute to categorization beha-
vior; second, the categorization accuracy was significantly higher
in recognized than unrecognized trials (only subjects with more
than five scrambled images in each group were included, N= 15,
Wilcoxon signed-rank test, p= 1.5 × 10−3), suggesting that low-
level image features potentially contribute to False Alarms.

Below we describe the results of testing the General and
Specific models of the influence of pre-stimulus activity on object
recognition (Fig. 1a). During task performance, subjects’ brain
activity was recorded by a 275-channel whole-head MEG system.
We defined pre-stimulus brain state as the activity pattern
obtained by averaging the MEG signal in a two-second window
before stimulus presentation in each trial (red bar, Fig. 1b). This
approach did not require frequency-domain filtering of the data
and therefore avoids potential filter-induced signal leakage from
post- to pre-stimulus time window. Furthermore, slow
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fluctuations in ongoing brain activity recorded by electrical field
potentials have been shown to reflect coherent fluctuations in
brain networks39 and influence detection of forthcoming
stimuli40,41. These activity patterns were used to fit multivariate
logistic regression models (see Methods) that predict recognition
experience (“yes”/“no”) and objective or reported stimulus
category (face/object/animal/house). The models’ performance
was assessed by using a leave-one-out cross-validation scheme
and estimating the area under the receiver-operator curve
(AUROC, see Methods and Supplementary Code 1).

Testing the General model. To test whether pre-stimulus activity
influences recognition according to the General model (Fig. 1a),
we fit a logistic regression model based on pre-stimulus activity

patterns and used it to generate single-trial predictions of
recognition reports (“yes”/“no”). For trials wherein real
images were presented, we found that pre-stimulus brain states
indeed predicted the reported recognition of upcoming stimuli
(AUROC= 0.66 ± 0.01, p < 0.001, label permutation test, N= 24;
Fig. 2a, first bar; model activation pattern analysis is shown in
Supplementary Fig. 2a, b).

Since subjective recognition also occurs in a substantial fraction
of scrambled-image trials (Fig. 1e), we performed a similar
analysis using brain states preceding scrambled images. For this
analysis, only subjects who reported recognition in more than five
scrambled-image trials were included (N= 15, see methods).
Model performance was significantly above chance for
scrambled-image trials as well (AUROC= 0.57 ± 0.02, p= 6 ×
10−3, label permutation test; Fig. 2a, second bar). We next tested
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whether the models that were trained on real and scrambled
images utilized similar features of pre-stimulus brain states to
predict the recognition reports. To this end, we examined
whether the model trained on real-image trials had the power to
predict recognition reports in scrambled-image trials, and vice
versa. We found significant AUROC scores of 0.59 ± 0.02 and
0.54 ± 0.01 in both cross-decoding analyses (p < 10−3, label
permutation test; Fig. 2a, 3rd and 4th bars). Thus, a shared
spontaneous neural process influences subjective recognition of
both real and scrambled images.

We next tested whether the pre-stimulus activity patterns
influencing recognition identified here are specific to each
objective stimulus category or shared across categories. The latter
scenario would fit with the General model. To distinguish
between these two possibilities, we compared the performance of
cross-validated models that were fit and tested using trials from
the same objective stimulus category (within-category) with
models that were fit using trials from one category and tested
using trials from a different category (across-category). There was
no difference in performance between within-category and cross-
category models (AUROC= 0.59 ± 0.012 and AUROC= 0.59 ±
0.010, respectively, Wilcoxon signed-rank test, p= 0.841; Fig. 2b),
suggesting cross-category generalization of the influence of pre-
stimulus activity patterns on recognition. Together, these results
provide strong evidence for the General model by showing the
existence of a spontaneous neural process that influences whether
an upcoming stimulus is reported as recognized, regardless of the
stimulus content.

Testing the Specific model. Our hypothesis for the Specific
model (Fig. 1a) states that pre-stimulus brain states can influence
object recognition in a category-specific manner. In this case, the
brain state that facilitates recognition of a stimulus from category
a differs from the brain state that facilitates recognition of a
stimulus from category b. This hypothesis predicts that in
recognized trials, pre-stimulus activity patterns contain infor-
mation about the objective category of forthcoming stimuli. Even
though stimuli from different categories were presented in a
randomized order (i.e., stimulus category was objectively
unpredictable throughout the experiment) such prediction is
possible because the model predicts conditional probability (see
Methods). Intuitively, the Specific model suggests that if the
brain makes a valid prediction about the category of a forth-
coming stimulus (i.e., predicted category equals objective sti-
mulus category), then this stimulus is more likely to be
recognized; thus, in recognized trials we should be able to
identify the objective stimulus category from the pre-stimulus
brain state better than chance.

In order to test this hypothesis, we fit a logistic regression model
to predict objective stimulus category at the single-trial level based
on pre-stimulus brain states and tested the model using a leave-
one-out cross-validation scheme. We found that model discrimin-
ability for objective stimulus category was significantly above
chance in recognized trials (AUROC= 0.57 ± 0.012, label permu-
tation test, p < 10−3, Fig. 2c, model activation pattern analysis is
shown in Supplementary Fig. 2c, d), but not unrecognized trials
(AUROC= 0.52 ± 0.006, label permutation test, p= 0.16).
Furthermore, objective stimulus category discriminability based
on pre-stimulus brain states was higher in recognized compared to
unrecognized trials (Wilcoxon signed-rank test, p= 2 × 10−3).
Therefore, in recognized trials alone, the category of a forthcoming
stimulus was predicted correctly more often than chance by a
model fit to pre-stimulus activity patterns, suggesting that
spontaneous activity influences object recognition also in a
content-specific manner as predicted by the Specific model.

According to the Specific model, predictions of objective
stimulus category are made by spontaneous neural activity before
stimulus onset; when such a prediction is valid, the stimulus is
more likely to be recognized (see Illustration in Fig. 3a). We next
asked whether this same spontaneous neural process also
influenced subjects’ categorization behavior in real images. If
this is the case, a logistic regression model trained to decode
objective stimulus category in recognized trials (i.e., identifying
neural activity behaving according to the Specific model, Fig. 2c,
1st bar) should also have predictive power in decoding subjects’
reported category in both recognized and unrecognized trials. In
recognized trials, objective stimulus category is equal to reported
stimulus category in >85% of trials; thus, a model trained to
predict objective stimulus category would be able to predict
reported stimulus category trivially. We first confirmed that this
is indeed the case (AUROC= 0.57 ± 0.013, label permutation test,
p < 10−3; Fig. 2d, 1st bar). By contrast, in unrecognized trials, the
same model had no predictive power regarding reported stimulus
category (AUROC= 0.5 ± 0.01, label permutation test, p= 0.44;
Fig. 2d, 2nd bar). Therefore, the spontaneous neural process that
facilitates subjective recognition in a category-specific manner
does not directly influence subjects’ forced discrimination of
object category in real images.

To gain a better understanding of the category report system,
we tested whether there is any information in pre-stimulus brain
states that influenced subjects’ reported category. Given the high
redundancy between objective stimulus category and reported
stimulus category in recognized trials, we focused on unrecog-
nized trials here. We found that a logistic regression model
trained on pre-stimulus activity was indeed able to predict the
reported stimulus category better than chance in unrecognized
trials (AUROC= 0.57 ± 0.01, label permutation test, p= 10−3,
Fig. 2e, 1st bar). Interestingly, this model also showed significant
discriminability for reported stimulus category when trained on
unrecognized trials but tested on recognized trials (AUROC=
0.53 ± 0.01, label permutation test, p= 10−3; Fig. 2e, 2nd bar).
Together, these results suggest that the spontaneous neural
process that facilitates object recognition in accordance with the
Specific model is distinct from the process biasing the category
report.

Behavioral consequences of General and Specific processes. So
far, we have shown that spontaneous neural activity can influence
object recognition in manners consistent with the General and
the Specific model. Next, to shed more light on the nature of this
effect, we examined how fluctuations in these neural processes on
a single-trial level influence two orthogonal aspects of recognition
behavior as defined according to SDT: criterion (c), which cap-
tures the tendency of a subject to respond “Yes” (i.e., to report
subjective recognition of object) regardless of whether the image
contains an object, and sensitivity (d′), which captures the ability
of a subject to distinguish between real and scrambled images.

To assess the behavioral consequences of pre-stimulus neural
processes acting according to the General and Specific models, we
extracted decision variables produced by logistic regression
decoders in the form of predicted probabilities (see Fig. 3a and
Supplementary Fig. 3). For the General process, we used the
decision variable produced by a model fit to activity patterns
preceding real images (Fig. 2a, 1st bar) that corresponds to
predicted probability of recognition, P(recognition). For the
Specific process, we used the decision variable produced by a
model fit to activity patterns preceding recognized real images
(Fig. 2c, 1st bar) that corresponds to predicted probability of an
objective stimulus category, P(category). Using the probabilities
predicted on each trial, we split all trials into two groups for each
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process (Fig. 3, “hi” and “lo” groups). For the General process, we
defined a high-probability group as trials where the predicted
probability of the image to be recognized was higher than the
probability of that image to be unrecognized; the remaining trials
were placed in the low-probability group. For the Specific process,
we defined a high-probability group as trials where the predicted
probability of the objective forthcoming stimulus category was
higher than that of any other category (i.e., the objective
forthcoming stimulus category was predicted correctly by the
model using information present in pre-stimulus activity); all
other trials were placed in the low-probability group. Note, all
models for this analysis were trained using real-image trials only,
while the probabilities were predicted for scrambled-image trials
and real-image trials through cross-validation.

The results so far indicate that both ongoing brain processes,
General and Specific, influence subjective recognition, but do not
inform on whether such effects stem from a shift in criterion, a
change in sensitivity, or both. In SDT framework, recognition
experience report (“yes”/”no”) can be interpreted as a signal
detection task, where “signal” refers to an object stimulus—
present in real images and absent in scrambled images. Similarly,

the categorization task is a four-alternative force choice task,
where discrimination sensitivity can be operationally measured
by percent correct of category reports33. Figure 3b, c illustrates
potential influences ongoing brain states may have on subjects’
recognition (Fig. 3b) and categorization (Fig. 3c) reports.

To test these hypotheses, we first calculated the recognition
rates in groups of trials defined by the above approach. For the
General model, the recognition rate in real-image trials (i.e., “Hit
Rate”) was 0.56 ± 0.03 in high and 0.36 ± 0.03 in low probability
groups. The recognition rate was higher when the predicted
probability of recognition by the General process is high compared
to low (Fig. 4b, Wilcoxon signed-rank test, p= 1.82 × 10−5, N=
24). For the Specific model, the Hit Rate was 0.50 ± 0.04 in high
and 0.43 ± 0.04 in low probability groups with a significant
difference between groups (Fig. 4b, Wilcoxon signed-rank test,
p= 6.7 × 10−4, N= 24). These results stem from our earlier
observations that there are spontaneous neural processes influen-
cing subjective recognition according to both the General and the
Specific model. In trials where scrambled images were presented,
the models that were trained using real-image trials only predicted
recognition rates (i.e., “False Alarm Rate”) of 0.23 ± 0.03 and
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0.15 ± 0.03 for the high and low probability groups according to
the General model, and 0.17 ± 0.03 and 0.18 ± 0.03 according to
the Specific model (Fig. 4b). The recognition rate varied according
to the General process (Wilcoxon signed-rank test, p= 1.83 ×
10−4, N= 24) but not the Specific process (Wilcoxon signed-rank
test, p= 0.43, N= 24).

Since recognition rates are influenced by both criterion and
sensitivity, the interpretation of the above results alone is
ambiguous. To resolve this, we next calculated SDT metrics
within each group of trials. According to the General model,
criterion (c) was 0.34 ± 0.08 and 0.83 ± 0.1 and sensitivity (d′) was
1.01 ± 0.13 and 0.9 ± 0.12 in high and low probability groups. We
found that criterion (c), but not sensitivity (d′), was influenced by
the pre-stimulus activity patterns associated with the General
model (Fig. 4c, d, paired t-test, p= 1.63 × 10−9 and p= 0.28,
respectively, N= 24). Thus, the neural process underlying the
General model influences recognition by shifting the decision
criterion in the liberal direction. According to the Specific model,
criterion was 0.57 ± 0.1 and 0.66 ± 0.11 and sensitivity was 1.16 ±
0.13 and 0.92 ± 0.11 in high and low probability groups. Unlike
for the General model, sensitivity (d′), but not criterion (c), was
influenced by the pre-stimulus activity patterns associated with
the Specific model (Fig. 4c, d, paired t-test, p= 4.66 × 10−2 and
p= 0.12, respectively, N= 24). Thus, the neural process under-
lying the Specific model influences recognition by enhancing
recognition sensitivity.

We further tested whether the two spontaneous brain processes
influence the accuracy of subjects’ categorization reports. The
percentage of real images categorized correctly was 68.77 ± 2.12%
and 55.31 ± 2.33% according to the General model and 65.67 ±

2.92% and 59.14 ± 2.32 according to the Specific model in high
and low probability trial groups, with both models having a
significant influence (Fig. 4e, Wilcoxon signed-rank test, General:
p= 1.82 × 10−5; Specific: p= 3.91 × 10−3, N= 24). Given that
scrambled images also contain category-specific low-level features
(Fig. 1f), it is conceivable that ongoing brain processes may also
influence subjects’ categorization of scrambled images. To test
this hypothesis, we used the models trained on real-image trials
and tested their effects on subjects’ categorization accuracy in
scrambled-image trials. The percentage of scrambled images
categorized correctly was 40.39 ± 2.8% and 36.49 ± 2.1% accord-
ing to the General model and 44.71 ± 3.77% and 36.1 ± 1.64
according to the Specific model in high and low probability trial
groups. Notably, only the Specific process significantly biased
categorization accuracy in scrambled image trials (Fig. 4f, p=
3.45 × 10−2 for Specific, p= 0.14 for General, N= 24). These
results indicate that both spontaneous processes influence
category discrimination decisions made about forthcoming real
images, but only the Specific process also enhances category
discrimination performance on scrambled images.

In sum, we observe a double dissociation in how spontaneous
neural processes related to the General and the Specific model
shape object recognition (captured by “Yes” vs. “No” answers):
the former shifts decision criterion whereas the latter enhances
sensitivity of object detection.

Trial-history in General and Specific processes. We examined
the relationship between predictions made by the two models and
the subjective recognition reports made on the preceding or

c

b

a

d

General
10031.0

0.8

0.6

H
it 

ra
te

0.4

0.2

0.0

1.0 3 100

80

60

40

20

0

2

1

–1

0

0.8

0.6

F
A

 r
at

e

C
rit

er
io

n 
(c

)

%
 C

or
re

ct

0.4

0.2

0.0

n.s.

n.s.
n.s. n.s.

2

1

0S
en

si
tiv

ity
 (

d′
)

–1

80

60

%
 C

or
re

ct

40

20

0

Lo LoHi HiLo LoHi HiLo LoHi

Lo Hi Lo Hi Lo Hi Lo Hi Lo Hi Lo Hi

Hi

Specific General Specific

P (recognition) P (category) P (recognition) P (category)

e

f

General Specific

Detection Discrimination

Real (CV)

Real (CV) and
Scrambled

Scrambled

Images in test set:

Images in training set:

Real

P (recognition) P (category)

Fig. 4 The predictions made by the General and Specific models differentially bias the SDT metrics. a–d Show the metrics of detection (based on subjective
recognition reports: “yes” or “no”) and e–f show the metrics of discrimination (based on subjective stimulus category reports: “Face”, “House”, “Object”, or
“Animal”). a Recognition rates as a function of predictions made by the General and Specific (cross-validated, CV) neural process in real-image trials (Hit
Rate). b Same as a but for scrambled-image trials (False Alarm rate) while the models were fit in real-image trials. c SDT sensitivity (d′) as a function of
predictions made by the General and Specific neural process. d SDT criterion (c) as a function of predictions made by the General and Specific neural
process. e Percent of correct subjective stimulus category reports for the two models in real-image trials (cross-validated, CV). f Percent of correct
subjective stimulus category reports for the two models in scrambled-image trials, while the model was fit in real-image trials only. Wilcoxon signed-rank
test was used to assess the difference between the groups in a, b, e, f and paired t-test to assess the difference between groups in c, d (N= 24). See
Supplementary Figure 3 for details on how trials were split into high and low probability groups. Source data are provided as a Source Data file

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-11877-4 ARTICLE

NATURE COMMUNICATIONS |         (2019) 10:3910 | https://doi.org/10.1038/s41467-019-11877-4 |www.nature.com/naturecommunications 7

www.nature.com/naturecommunications
www.nature.com/naturecommunications


ensuing trial. For the General model, trials split by probability of
subjective recognition predicted on the previous trial were not
different in recognition rate (Wilcoxon signed-rank test, p= 0.63)
nor did the subjective recognition report on a previous trial
influence the predicted probability by the model (Wilcoxon
signed-rank test, p= 0.63). For the Specific model, similarly, the
model-predicted category matched the objective stimulus cate-
gory presented on the previous trial at a rate of 25.7 ± 0.5%, not
higher than the chance level of 25% (Wilcoxon signed-rank test,
p= 0.13). In addition, the model-predicted category did not
influence the recognition rate of the next trial whether it matched
the objective stimulus category in this next trial or not (Wilcoxon
signed-rank test, p= 0.33). Furthermore, there was no significant
across-trial temporal autocorrelation in the decision variables
predicted by the two models. Thus, while our behavioral result
showed a trial history effect in subjective recognition behavior
(Supplementary Fig. 1B), its link to the spontaneous processes
uncovered herein is unclear at present.

The General process is related to pupil-linked arousal. Lastly,
we tested whether the spontaneous neural processes acting
according to the General and Specific models correlate with trial-
to-trial arousal fluctuations as indicated by pupil size. For the
General neural process, we used the same procedure to split trials
into high and low probability groups as in the above analysis
(Figs. 3 and 4). We compared the mean pupil size across a two-
second pre-stimulus window between the two groups, and found
that higher predicted probability of recognition correlated with a
larger pupil size (−0.13 ± 0.03 and 0.02 ± 0.04 for low and high-
probability groups, Wilcoxon signed-rank test, p= 5.9 × 10−4,
N= 23, Fig. 5a). Thus, the General neural process is related to
fluctuations in arousal.

For the Specific neural process, we hypothesized that higher
arousal may lead to more specific (i.e., certain) predictions of
stimulus category. In each trial, the Specific spontaneous neural
process generates a predicted probability for each stimulus
category (face, house, object, animal), which sum to 1 (see
illustration in Fig. 5b). The prediction is completely certain if the
predicted probability for one stimulus category is 1 and the
others 0. On the other hand, assigning a probability of 0.25 to
each category would mean that the model is entirely uncertain.
We utilized the measure of entropy to quantify uncertainty of
category prediction made by Specific spontaneous neural process

in each trial, which ranged from 0 to 1, corresponding to the
aforementioned two extreme cases. Trials were split into two
groups using a median-split based on entropy. Pupil size did not
vary with the uncertainty of category prediction (Fig. 5c, −0.08 ±
0.03 and −0.07 ± 0.03 for high and low entropy groups, Wilcoxon
signed-rank test, p= 0.63, N= 23). Thus, the General, but not
Specific, pre-stimulus neural process correlates with pupil-linked
arousal.

Discussion
In sum, we uncovered two separate spontaneous neural processes
that influence visual object recognition. First, we observed a
general process, which influences recognition regardless of the
stimulus content. Second, we identified a specific process, which
makes spontaneous predictions about the category of forth-
coming stimuli and influences recognition in a content-specific
manner. Only the general process correlated with pupil size,
which reflects arousal fluctuations. The two processes result in
doubly dissociable effects on object recognition behavior: the
general process correlates with a shift in decision criterion with
no effect on sensitivity, while the specific process correlates with a
change in sensitivity with no effect on criterion. These findings
support a dual-model framework for the role of spontaneous
neural activity in sensory perception, which offers new perspec-
tives for interpreting existing results and points to new directions
for future research.

It is well established that pre-stimulus neural activity can
influence the detection of simple sensory stimuli23,24,42,43. How-
ever, previous studies have not tested whether this influence is
content-specific or not. Several considerations suggest that pre-
viously observed effects of pre-stimulus activity on sensory
detection were largely non-content-specific. First, previous stu-
dies have reported that pre-stimulus activity, including α oscil-
lation power and neuronal firing rates, influences the criterion but
not the sensitivity of sensory detection35,44. Further, pre-stimulus
fMRI activity in visual cortex influences false alarm rates of sti-
mulus detection45, which is akin to recognition of scrambled
images in our experiment and is related to a shift in criterion.
Second, observations of spontaneous activity in large-scale
attentional networks influencing sensory detection42,43 are likely
related to fluctuations in arousal and sustained attention. Given
our findings showing that the general, but not the specific,
spontaneous neural process influences recognition criterion and
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correlates with arousal, these previous findings are likely related
to the non-content-specific general process identified herein.

Spontaneous (i.e., non-light-mediated) pupil size fluctuations
reflect locus coeruleus neuronal activity and norepinephrine
modulations of neural activity in the neocortex46,47. Recent
results suggest that spontaneous pupil fluctuations correlate with
widespread cortical activity in the default-mode network19,
frontoparietal attention networks48 and sensory cortices19,48–50. It
has also been shown that pupil size correlates with attention48,51

and, together, arousal and attention appear to exert overlapping
effects on cortical activity and sensory encoding50,52. We
observed that the spontaneous neural process acting in accor-
dance with the General model correlates with trial-to-trial fluc-
tuations in pre-stimulus pupil size; therefore, it is likely supported
by global brain states and large-scale neural activity.

Theories have postulated that spontaneous, content-specific
neural activity may facilitate perceptual processing9,12,13,53. Here,
we provide the first experimental evidence supporting this
hypothesis. Specifically, we report that a valid category prediction
—that is, when the category predicted by pre-stimulus activity
matches the objective stimulus category—enhances human sub-
jects’ recognition sensitivity of object stimuli without influencing
recognition criterion. While it has been reported that previously
experienced sensory environment shapes content-specific spon-
taneous activity patterns8,54,55, we now show that such activity
patterns directly influence perception of forthcoming stimuli in
humans. Thus, our finding establishes that content-specific
spontaneous neural activity indeed plays a role in perception,
by carrying predictive information about future stimuli content
and enhancing perceptual sensitivity when such information
is valid.

Our findings may also shed light on potential neural
mechanisms involved in Bayesian theories of perceptual infer-
ence. Bayes formula can be used to describe object perception as
an integration of image feature reliability, embodied by like-
lihood, and the prior probability distribution. For instance, Ker-
sten et al.56 suggested that “under ambiguous conditions, the
visual system is forced to guess, but it can make intelligent guesses
by biasing its guesses toward typical objects or interpretations”56.
Fiser et al. suggested that prior knowledge, such as knowledge
about typical objects, could be represented as “samples” in
spontaneous neural activity7,57. It was unknown, however, how a
process of “biasing” toward typical objects is implemented on a
single-trial level and in what way it influences perception. The
spontaneous category-specific activity patterns we observed could
represent individual “samples” from prior knowledge. We found
that these patterns facilitate the perception of forthcoming stimuli
by enhancing recognition sensitivity, suggesting that valid pre-
dictions increase the strength of content-specific signals, which
results in a larger distance between neural representations of
object and scrambled noise stimuli.

It is possible that the spontaneous neural processes reported
herein partially reflect spontaneous fluctuations in cognitive
processes such as attention and expectation. While in the present
study we did not explicitly manipulate these cognitive processes,
spontaneous fluctuations in neural activity are suggested to cor-
relate with spontaneous fluctuations in cognition58. Furthermore,
top-down cognitive processes influence object recognition59,60. It
is also possible that bottom-up visual signals simply encounter
the ongoing neural state of the local networks along the visual
processing hierarchy, which in turn affects processing of these
signals. These possibilities of the relationship between sponta-
neous neural processes and top-down/bottom-up stimulus pro-
cessing deserve future investigation.

The current study does not provide substantial insights into the
anatomical underpinnings of the general and specific

spontaneous neural processes. Source reconstruction of pre-
stimulus MEG data in the context of tasks is challenging because
pre-stimulus activity is typically used to estimate the noise cov-
ariance matrix for guiding source reconstruction of post-stimulus
activity. Our finding of a double dissociation between the general
and the specific processes points to non-overlapping underlying
mechanisms. Future studies employing intracranial recordings or
fMRI should help with providing anatomical insight into the
phenomena uncovered herein by testing whether the general and
specific processes are supported by distinct anatomical areas.

Specifically, we suggest to test in future studies whether the
general ongoing process is supported by brain areas involved in
the control of arousal and the specific ongoing process by areas
encoding object representations. First, recent reports suggest that
it is possible to track arousal fluctuations using resting-state fMRI
signals in widespread cortical and subcortical regions19–21,61. Yet,
a direct influence of these arousal-related modulations on sensory
processing remains to be shown. Second, it remains to be tested
whether the specific ongoing process is supported by brain areas
specialized in object processing, such as the ventral temporal
cortex (VTC). Recent studies demonstrated the contribution of
VTC to object category decoding from whole-brain MEG signals
by employing novel computational approaches to combine MEG
and fMRI data62,63. Thus, reactivation of stimulus-triggered
patterns in spontaneous VTC activity may underlie the specific
ongoing process uncovered herein—a hypothesis that warrants
future investigation. In sum, our findings provide new hypotheses
to be tested in future studies.

Much is known about how the brain represents visual objects.
In natural settings, however, object recognition does not rely on
sensory input alone but is regulated by ongoing brain dynamics to
a large extent. For example, a percept of an object can emerge in
the complete absence of sensory stimuli (as in dreams and hal-
lucinations) and, on the other hand, salient stimuli can go
unnoticed (e.g., during inattentional blindness). Our findings
reveal a heretofore unknown dual role of spontaneous neural
activity and shed light on how the brain implements object
recognition beyond mere extraction of sensory features. These
findings offer a new framework for future research where the two
ongoing neural processes (content-specific and non-content-
specific) we identified may have dissociable impacts on other
perceptual and cognitive functions as well.

Methods
Participants. All participants (N= 25, 15 females, mean age 26, range 22–34)
provided written informed consent. The experiment was approved by the Insti-
tutional Review Board of the National Institute of Neurological Disorders and
Stroke (protocol #14-N-0002). The participants were right-handed, neurologically
healthy, and had normal or corrected-to-normal vision. One enrolled participant
decided to stop the experiment after finishing one experiment block due to dis-
comfort and is not included in data analyses. We chose a sample size similar to
those used in recent published MEG studies on perception and cognition con-
ducted with healthy human volunteers.

Experimental stimuli. Images were selected from four categories—faces, animals,
houses, and objects (Fig. 1c). The images, selected from public domain labeled
photographs or from Psychological Image Collection at Stirling (PICS, http://pics.
psych.stir.ac.uk/), were resized to 300 × 300 pixels and converted to grayscale. The
actual experimental stimuli from PICS are not available for commercial use;
therefore, the images shown in Figures were downloaded from https://www.pexels.
com/ and are presented to demonstrate the outcome of image processing procedure
described below. The pixel intensities, ranging from 0 (black) to 255 (white), were
normalized by removing the mean and dividing by standard deviation and filtered
using a 2-D Gaussian smoothing kernel with a standard deviation of 1.5 pixels and
7 × 7 pixels size (imgaussfilt, MATLAB). Five unique images were included in each
category, resulting in 20 unique real images in total. Scrambled images were created
by shuffling the 2-D Fourier transformed phase of one randomly chosen image
from each category. The edges of the images were gradually brought to background
intensity by multiplying the image intensity with a Gaussian window with a
standard deviation of 0.2. Stimuli were presented using the Psychophysics
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Toolbox64 in MATLAB via a projector with a 60-Hz refresh rate onto a screen.
Stimulus size was 8° in diameter. The stimuli were presented gradually from 0.01 to
threshold intensity during ~66.7 ms (four video frames).

Experimental trial structure. Each trial started with a gray background (Fig. 1b).
After a blank screen of a random duration between 3 and 6 s (following an
exponential distribution), a stimulus was presented. Then another blank screen
with a duration randomly chosen between 2 and 4 s (following an exponential
distribution) was presented. The luminance of the blank screens was equal to the
background luminance of the stimulus screen. The first blank period ensured that
the subject could not predict the onset of the stimulus. Each trial ended with two
sequential questions (see section Task and instructions below). Subjects indicated
their answers to the questions via a right-hand keypad. A central fixation cross was
present at all times except during response prompts and subjects were instructed to
fixate whenever the fixation cross is present.

Task and instructions. First, subjects were instructed to report image category.
When the image was not recognized, subjects were instructed to guess randomly
(four-alternative forced choice) with an emphasis on making a genuine guess to the
best of their ability. The response mapping, indicated by the order of words “Face”/
“House”/“Object”/“Animal” on the screen, was randomized across trials. Second,
subjects were instructed to report their recognition experience with a “yes” or “no”
choice, where “yes” was defined as “something that makes sense in the real world”.
Subjects were instructed to report “yes” even if the image was not entirely clear or
they saw only part of the image, such as only the eyes and ears of an animal without
knowing exactly what animal it was. Subjects were instructed to report “no” if they
did not see anything at all or if they saw random noise patterns. Subjects were not
informed of the use of scrambled images.

Threshold image contrast definition. We used an adaptive staircase procedure
“QUEST”65 to find image contrast (c) yielding a recognition rate of 50% (pro-
portion of “yes” responses to the second question). The image pixel intensity, I, at a
given contrast, c, was calculated as:

IðcÞ ¼ bðIscaled � cþ 1Þ ð1Þ
where b is the background intensity (set to a constant value of 127) and scaled pixel
intensities (Iscaled) were obtained by rescaling the image pixel intensities between
−1 and 1. As a result, the lightest pixel value in the image was equal to Imax=
b(1+ c) and the darkest Imin= b(1 − c). Therefore, we defined the contrast of a
presented image as:

c ¼ Imax � Imin

2b
ð2Þ

which ranged between 0 and 1.
Subjects performed the QUEST procedure under conditions identical to the

subsequent main task, except that the trial timing was faster (750 ms pre-stimulus
interval and 1 s post-stimulus interval). The initial contrast of each image in the
QUEST procedure was determined by the mean of threshold contrasts obtained in
three pilot subjects who were not part of the present study. For each subject in the
present study, the QUEST procedure included 120 trials, split into three individual
staircase procedures; the median among the three final threshold contrasts was
selected for the main task.

Experiment structure. First, each subject performed an adaptive staircase proce-
dure to determine the threshold image contrast. After a short break, the main
experiment began, where the trials were shown repeatedly with an identical stimulus
contrast at the subject’s individually determined threshold while MEG signals were
continuously recorded. The main experiment had 360 trials with 300 real-image
trials and 60 scrambled-image trials. Each unique image was repeated 15 times. The
images were presented in a random order; therefore, the image category was
unpredictable by the subject. The trials were split into 10 experimental blocks
containing 36 trials each. Each block ended with a self-paced break period.

Eye-tracking and pupil size preprocessing. During the experiment, subjects’ eye
position and pupil size were continuously monitored and recorded using an Eye-
Link 1000+ system, in the binocular mode with a sampling rate of 1000 Hz. Blinks
were detected by identifying the time points where pupil diameter of the right eye
dropped by a threshold of 3.6 measurement units; blink onset was defined as 40 ms
before crossing the threshold and blink offset was defined as 40 ms after (due to
tendency for MEG artifacts to occur within this time window). For further analyses,
pupil diameter measurements were averaged in a time window of 2 s before sti-
mulus onset, while excluding the time points affected by blinks. No frequency-
domain filtering was applied. One subject was excluded from pupil size analysis
due to inferior quality of data on all experiment blocks.

MEG data acquisition and preprocessing. MEG data were recorded at a sam-
pling rate of 1200 Hz using a 275-channel scanner (CTF, VSM MedTech). Before

and after each block, the head position of the subject was measured using coils
placed on the ear canals and the bridge of the nose. Between blocks, the head
position of the subject was measured with respect to the MEG sensor array using
coils placed on the left and right preauricular points and the nasion, and the
subject self-corrected their head position to the same position recorded at the start
of the first block using a custom visual-feedback program [written by TH, inspired
by (Stolk et al., 2013)66] in order to minimize head displacement across the
experiment. All MEG data samples were corrected with respect to the refresh delay
of the projector (measured with a light sensor). MEG data were preprocessed
using Python and the MNE toolbox67 (version 0.17.1). Three dysfunctional sen-
sors were removed from all analyses. Independent component analysis (ICA) was
performed on each block to remove eye-movement, blink, cardiac and movement-
related artifacts. The linear trend was removed from each experimental block. No
frequency-domain filtering was applied in order to avoid artifactual signal
bleeding from the post-stimulus signal into the pre-stimulus period. Finally, for
each trial and each sensor the recorded MEG data were averaged in a 2-sec time
window before stimulus onset. Based on eye-tracking data, trials in which a blink
occurred during stimulus presentation were excluded, resulting in 12.0 ± 2.3
(mean ± s.e.m.) rejected trials for 20 participants. Loss of eye-tracking occurred in
four subjects in several experiment blocks, hence no trials were rejected in those
subjects based on blinks.

Formal hypotheses. Let X be a set of brain states preceding the appearance of
stimuli from category in set S and let R be the set of subjective recognition reports

X ¼ x1; x2; ¼ xnf g ð3Þ

S ¼ face; object; animal; housef g ð4Þ

R ¼ yes; nof g ð5Þ
A pre-stimulus brain state x 2 X is a vector each dimension of which signifies

an attribute of a brain state (for example, activity recorded with one MEG sensor).
A brain state may influence recognition report r 2 R of stimulus s 2 S in two
manners:

General model hypothesis: A subset of brain states X′ exists X′ � Xð Þ, such that
the probability (Pr) of recognizing stimulus s 2 S is higher than not recognizing it
if the brain is in state x′ 2 X′ at the time of stimulus arrival:

Pr r ¼ yesjx′; sð Þ>Prðr ¼ nojx′; sÞ ð6Þ
where the probabilities of recognition outcomes on a given trial sum to 1:
Prðr ¼ yesÞ þ Pr r ¼ noð Þ ¼ 1

This hypothesis can be tested using a logistic regression model:

log
Pr r ¼ yesjx; sð Þ
Pr r ¼ nojx; sð Þ

� �
¼ βx ð7Þ

Pr r ¼ yesjx; sð Þ
1� Pr r ¼ yesjx; sð Þ ¼ eβx ð8Þ

Pr r ¼ yesjx; sð Þ ¼ 1
1þ e�βx

ð9Þ
A model that is able to discriminate between the two groups of brain states X′

and �X′, with a decision boundary at βx= 0, would present a supporting evidence
for this hypothesis. Note, it is required that the stimulus will be sometimes
recognized and sometimes not in order to fit and test the model. In a more general
case, however, certain stimuli can have no plausible pre-stimulus brain state (for
example, extremely weak stimulus that can never be recognized). On the other
extreme, some stimuli can be unrecognized only rarely and have many preferred
brain states (for example, a salient face stimulus can be unrecognized in extreme
states of inattention).

Specific model hypothesis: A subset of brain states Xa exists Xa � Xð Þ such that
the probability of recognizing stimulus sa 2 S is higher than the probability of
recognizing stimulus sb 2 S arriving when the brain is in state xa 2 Xa :

Pr r ¼ yesjxa; sað Þ>Prðr ¼ yesjxa; sbÞ ð10Þ
By definition of conditional probability:

Pr rjx; sð Þ ¼ Prðr; x; sÞ
Prðx; sÞ ¼ Prðsjx; rÞP x; rð Þ

Prðx; sÞ ð11Þ

and assuming the stimulus category is independent of pre-stimulus brain state:

Pr x; sð Þ ¼ PrðxÞPrðsÞ ð12Þ
the hypothesized inequality (10) can be written as:

Pr sajxa; r ¼ yesð ÞPr xa; r ¼ yesð Þ
Pr xað ÞPr sað Þ >

Pr sbjxa; r ¼ yesð ÞPr xa; r ¼ yesð Þ
Pr xað ÞPr sbð Þ ð13Þ
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Reducing equal terms and given that the different categories were presented
with equal probabilities:

Pr sajxa; r ¼ yesð Þ>Prðsbjxa; r ¼ yesÞ ð14Þ
The existence of the inequality above can be tested with a logistic regression

model formulated as:

log
Pr sajx; r ¼ yesð Þ
Pr sbjx; r ¼ yesð Þ

� �
¼ βax ð15Þ

Pr sajx; r ¼ yesð Þ ¼ 1
1þ e�βax

ð16Þ
Thus, if a preferred brain state for stimulus sa processing exists, we should be

able to predict the objective stimulus category using logistic regression model fit to
pre-stimulus brain activity in recognized trials.

Multivariate pattern analysis. Multivariate pattern analyses were performed with
scikit-learn package for Python68 (version 0.20.2, see Supplementary Code 1 for
details). We used penalized logistic regression model with L2 norm regularization
(C= 1) and a leave-one-out cross-validation scheme. We used Coordinate Descent
(CD) algorithm to fit the binary models and Newton’s Method algorithm to fit the
multi-class models. To quantify the predictive power of binary models (i.e., pre-
dicting the recognition report: “yes”/ “no”), area under the receiver-operator curve
(AUROC) was estimated. ROC was constructed by using the class probabilities
predicted by a model and shifting the discrimination threshold. An AUROC of 0.5
indicates no predictive power, and a value of 1 indicates perfect predictive power.
To quantify the performance of multi-class models (i.e., predicting object category:
face/house/object/animal), we calculated receiver-operator curve for each class
versus others and calculated the area under the averaged curve.

The statistical significance of AUROC scores was estimated using group-level
label permutation tests. For each model tested, we repeated the analysis 1000 times
with labels shuffled across trials in the training set and re-computed the AUROC
value for each permutation—this procedure was used to estimate the data-driven
chance-level distribution of AUROC values69. The actual average AUROC across
subjects was compared to the average AUROC values of 1000 permutations and the
p-value was computed as the fraction of permuted scores that exceeded the
actual score.

Probability of forthcoming recognition experience and probability of
forthcoming stimulus/report category were calculated for each trial using the
logistic regression model:

Pr Y ¼ yjxð Þ ¼ 1

1þ e�βyx
ð17Þ

where x is the pre-stimulus brain state, y is the predicted class label (“yes”/”no” for
recognition and face/object/animal/house for category), and βy is the fitted model
parameters. Pre-stimulus brain state, x, was calculated using MEG data recorded
from M sensors and averaged across time in a 2-s window before stimulus onset
(see MEG data preprocessing above for more details) and, for every experimental
trial, x constituted an M-dimensional vector. In this scenario, each MEG sensor
constitutes a model feature, and βy is an M-dimensional vector of weights. All
sensors were used to fit the models except the analyses in Supplementary Fig. 2b, d
where separate groups of sensors were used to fit and test each model. Non-zero
model weights (βy) together maximize class-specific information and suppress
noise or distracting signals. In order to examine to which extent each sensor drives
the model performance we calculated “activation patterns” as: A ¼ Σxβy , where Σx

signifies data covariance70 for each model performing better than chance. The
group-level activation patterns were calculated using the median of subject-level
activation patterns (presented in supplementary Fig. 2).

In analyses that involved calculating AUROC for decoding of the recognition
report in scrambled images (Fig. 2a, 2nd–4th bars), only subjects that reported at
least 5 scrambled images as recognized were included (N= 15). This minimal
number of trials was required in order to fit the model (i.e., “training trial set”) and
to derive a meaningful interpretation of decoder discriminability from a separate
set of trials (i.e., “testing trial set”). All 24 subjects were included in decoding
analyses that did not rely on scrambled-image trials (Figs. 2b–e, 4).

Signal detection theory analysis. We calculated Signal detection theory (SDT)
metrics for detection and discrimination.

Detection: we calculated measures of sensitivity (d′) and bias (c) following
standard SDT analysis33 using subjective reports of recognition (i.e., responses to
the second question: “yes” or”no”). d’ indicates the ability to discriminate between
real images containing objects and scrambled images that do not contain objects
but preserve low-level features of the object images. It is computed by subtracting
the Z-transformed False Alarms Rate (FAR) from the Z-transformed Hit Rate
(HR):

d′ ¼ Z HRð Þ � ZðFARÞ ð18Þ
where Z is an inverse normal cumulative distribution function.

c criterion represents the tendency to make “yes” reports to indicate
recognition, regardless of whether the stimulus is a real or a scrambled image and is

computed as follows:

c ¼ � 1
2

Z HRð Þ þ ZðFARÞð Þ ð19Þ
We implemented Macmillan & Kaplan correction71 of FAR= 0 and HR= 1:

the False Alarm rate was defined as the recognition rate in scrambled-image trials
and was corrected to 1

2Nscr
in the case of no FA trials, where Nscr is the total number

of scrambled-image trials; the Hit Rate was defined as the recognition rate of real-
image trials and was corrected to 1� 1

2Nreal
in the case of Hit Rate equal to 1, where

Nreal is the total number of real-image trials.
Discrimination: We calculated percent of correct responses as an operational

measure of 4AFC (four Alternative Forced Choice) sensitivity using subjective
category reports (i.e., responses to the first question: “Face”, “House”, “Object” or
“Animal”)33,72.

Entropy. To quantify uncertainty in the predictions made by a logistic regression
model, we used a measure of information entropy:

HðcÞ ¼ �
Xn
i¼1

Pr cið Þ logn PrðciÞ ð20Þ

where c is the predicted category, and n is the number of categories we used in our
experiment (n= 4).

Statistics. Potential group-level differences between paired groups of bounded
variables (AUROC, %) were tested using nonparametric two-tailed Wilcoxon
signed-rank tests as provided by the Scipy package73. One-sample Student t-test
was used to assess differences in criterion and sensitivity. Repeated-measures
ANOVAs were used to compare models across ROIs, we used the MNE
implementation67.

Data availability
The datasets generated and analyzed during the current study are available from the
corresponding authors on reasonable request. Source data files for all figures are
provided.

Code availability
We used publicly available open source software toolboxes written in Python to analyze
our data. A demo script of a general workflow will be available with publication.
Additional scripts or details about the code are available from the corresponding authors.
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