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The vast majority of experiments examining perception and behavior are conducted using experimental paradigms that adhere to a rigid
trial structure: each trial consists of a brief and discrete series of events and is regarded as independent from all other trials. The
assumptions underlying this structure ignore the reality that natural behavior is rarely discrete, brain activity follows multiple time
courses that do not necessarily conform to the trial structure, and the natural environment has statistical structure and dynamics that
exhibit long-range temporal correlation. Modern advances in statistical modeling and analysis offer tools that make it feasible for
experiments to move beyond rigid independent and identically distributed trial structures. Here we review literature that serves as
evidence for the feasibility and advantages of moving beyond trial-based paradigms to understand the neural basis of perception and
cognition. Furthermore, we propose a synthesis of these efforts, integrating the characterization of natural stimulus properties with
measurements of continuous neural activity and behavioral outputs within the framework of sensory-cognitive-motor loops. Such a
framework provides a basis for the study of natural statistics, naturalistic tasks, and/or slow fluctuations in brain activity, which should
provide starting points for important generalizations of analytical tools in neuroscience and subsequent progress in understanding the
neural basis of perception and cognition.

Introduction
In neuroscience, our classical conception of sensorimotor exper-
iments is invariably built from the notion of the trial, a brief and
discrete series of events that allow the experimenter to select cer-
tain input parameters and then measure the resulting output of
the nervous system. Each subsequent trial can be executed in
conceptual isolation from the prior ones, typically with statisti-
cally independent input parameters. The outputs of the nervous
system occurring during or right after each of these trials are then
subjected to classical analyses derived from well-established
tools, such as signal detection theory (SDT). The near-exclusive
reliance on conventional experimental paradigms and analyses
reflects a preference for apparent simplicity and control for the
experiment and analysis, over the ecological validity of the tasks
and stimuli used to probe the brain. Here, we examine approaches
for quantitative neuroscience experiments that acknowledge that
natural behavior is rarely discrete and that brain activity follows
multiple time courses which do not necessarily obey experimenter-

imposed trial structure. We conclude that the synthesis of such ap-
proaches has the potential to enrich our understanding of neural
computation and how neural activity supports perception and be-
havior without a loss of quantitative rigor.

In this article, we focus on two primary reasons to consider
approaches beyond conventional experimental paradigms. First,
consider the fact that your own reading of this paper does not
involve a series of events that could be well described as brief,
independent trials, but still arises from coordinated patterns of
sensory input, neural processing, mental functions, and motor
behavior. Likewise, riding your bike to work, searching for a lost
key, or deciding whether to continue reading this—from simple
sensorimotor behaviors to the highest forms of metacognition—
involve continuous chains of sensory-cognitive-motor loops of
processing that continue over time frames longer and less well-
defined than that of a conventional experimental trial. Of course,
some behaviors, such as saccades, are at least individually quite
ballistic, although how they play out across a longer time course is
not yet well understood (Henderson, 2003; Hayhoe and Ballard,
2005; Najemnik and Geisler, 2005). Here, we explain that analyt-
ical tools exist for characterizing these sequences of behaviors.
We then argue that continuous sensory-cognitive-motor loops
are not merely tractable but should be thought of as the most
appropriate framework for studying many forms of behavior,
perception, and cognition that are currently shoehorned into tri-
als (or not studied due to the difficulty in doing so).

The second main reason for moving beyond near-exclusive
reliance on trial-based analyses is that they do not reflect the
realistic structures and dynamics that exist and occur in the en-
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vironment and the brain. The statistics of the inputs that define
the environment in which the brain evolved and normally func-
tions do not necessarily follow the standard assumptions (e.g.,
statistically independent and identically distributed, Gaussian)
often made to facilitate simple quantitative analyses. Instead, the
sensory environment is typically broadband, with visual patterns
exhibiting multiple spatial frequencies, and dynamical visual
stimuli and natural soundscapes exhibiting multiple temporal
frequencies. The distribution of such spatial and temporal fre-
quencies (i.e., its power) is often well approximated as 1/f�

(where � typically ranges from 0 to 2), implying that sensory
systems typically exhibit a wide set of time scales and temporal
dynamics (Bernacchia et al., 2011; Murray et al., 2014; Hasson et
al., 2015), quite distinct from the usual single-frequency (or oth-
erwise tightly restricted) nature of experimental inputs. Although
the presentation of a single sinusoidal input allows for powerful
and intuitive analyses derived from systems identification ap-
proaches, frequency-based analytic tools are capable of handling
more complex inputs, and broad spectrums with both fast/brief
and slow/long timescales are present both in natural stimuli and
in recorded patterns of brain activity. In a typical trial-based par-
adigm, such relationships can produce trial-to-trial serial depen-
dence in behavioral performance which may be more suitably
studied by a continuous paradigm.

More broadly, we take this opportunity to explain an experi-
mental and analytic framework that stands to make continuous
behaviors and mental processes, ongoing brain activity, and nat-
ural statistical structure more tractable and more integrated. The
value of this approach is not just ecological validity. By taking on
the continuous, broadband, and generally more complex nature
of both sensory inputs and neural activity, analytic tools can be-
come more powerful. They become capable of capturing ele-
ments typically left over as unexplained variance (“noise”), such
as slow temporal fluctuations in neural activity that do not obey
the faster timing of individual trials. Experiments also gain effi-
ciency, placing the subject/nervous system in contexts with a
higher duty cycle, with less time spent in secondary phases, such
as the dreaded intertrial interval. And perhaps most reassuringly,
the tools for thinking this way not only already exist (and have
been applied to neuroscience in certain situations) but are also
quantitatively relatable to many more familiar analyses. We now
consider this approach in more detail, synthesizing a generic
framework for analysis and a corresponding prescription for ex-
perimental design.

Moving from discrete to continuous paradigms in the study
of sensorimotor transformations
Signal detection theory (SDT) is central to the study of the rela-
tionship between neural activity and cognitive function (Green
and Swets, 1966). In the context of sensory systems, it posits that
each sensory stimulus is represented in the form of a scalar “in-
ternal response,” which reflects the intensity of the sensory stim-
ulus, but which is perturbed by noise. This noise, often working
in tandem with low stimulus intensities, places the internal re-
sponse for a particular trial in an ambiguous regimen: it is unclear
how much of the internal response is driven by the stimulus, and
how much is driven by noise on that particular trial.

As suggested by its name, SDT is most straightforwardly ap-
plied to the challenge of detecting a weak signal (Fig. 1, left). In
such tasks, an observer (i.e., a human or a trained animal) is
presented a stimulus, and their task is to indicate whether the
stimulus was present or not. Most readers will be familiar with the
comparison of each trial’s internal response to an (also unob-
served) internal criterion, as well as the four possible resulting
outcomes (hits, misses, correct rejections, and false alarms). It is
also common to apply the SDT framework to tasks other than
simple detection; for example, to the identification of a single
stimulus (e.g., was a motion display of varying strength moving
more to the left or to the right), and to two alternative forced
choice tasks (e.g., which of the two moving patches was faster).
Such trial-based approaches are easy to integrate with standard
statistical hypothesis testing, and other standard tools and anal-
yses established in the literature. A variety of classic and more
modern primers provide detailed and thorough mathematical
treatments in many extended domains, although the majority of
applications of SDT are of the simpler cases (Green and Swets,
1966; Nevin, 1969; Banks, 1970; Stanislaw and Todorov, 1999;
Swets, 2014). What we will focus on here are the core assump-
tions when SDT is related to neural activity.

In detection or simple identification/discrimination tasks,
connecting SDT to measurements of neural activity is superfi-
cially straightforward. The internal response is presumably the
appropriate neural activity, which is described as the noisy spike
count during stimulus presentation. Thus, neurophysiological
recordings can be thought of as providing direct access to the
internal representations (Fig. 1, middle), which are otherwise
treated as unobserved variables in purely behavioral experiments,
and which are usually estimated from analysis in such contexts.

Figure 1. Left, Schematic of SDT. The noisy sensory process develops over time given some input. The trial ends, and the decision is made based on endpoint of the sensory process relative to
criterion. The resulting decision provides 1 bit of information about the entire sensory process. Middle, Schematic of drift diffusion model. The noisy sensory process develops over time given some
input. The sensory evidence accumulates to some bound, and the decision is made based upon that bound. The resulting decision gives 2 pieces of information about the entire process (i.e., which
bound was hit, and when). Right, Schematic of the Kalmer filter approach. The noisy sensory process develops over time given some input. The subject provides continuous estimates of the signal
based on that noisy sensory process. The resulting behavior provides a full time series of information about the noisy sensory process over time, and trials tend to be longer because each trial is
associated with a continuous series of estimates rather than a discrete output.
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One limitation of SDT is that it is couched in discrete, singular
terms. A single value of noisy internal response is compared
against a criterion value. In this instance, the internal response
might be the spike count for the entire stimulus presentation,
which therefore collapses any temporal dynamics within the trial.
Although convenient and appropriate prima facie for tasks in
which the sensory event is correspondingly brief and/or discrete,
sensory decisions in the real world often take variable amounts of
time to complete, and the sensory stimuli themselves can have
noise that changes over time, requiring a process of evidence
accumulation. Thus, it seems worthwhile to consider extensions
of SDT that explicitly capture the temporal dimension.

The best-known temporal extension of SDT is the drift diffu-
sion model (Wald, 1947; Ratcliff, 1978; Smith and Ratcliff, 2004;
Palmer et al., 2005; Ratcliff and McKoon, 2008). Loosely, diffu-
sion can be thought of as signal detection over time, in which each
instantaneous time point has a corresponding noisy internal rep-
resentation (Fig. 1, middle). These repeated “pulls” from a signal-
detection theory type mechanism are then accumulated over
time. When this accumulated evidence reaches a requisite level
(the “decision bound”), the decision is made. The overt behav-
ioral response is then generated and, in the simplest case, as-
sumed to be a relatively rapid process that is brief and stereotyped
relative to the decision phase. The rate of accumulation can de-
pend on the strength of the sensory stimulus, and thus diffusion
to bound can be formulated to make a prediction for both the
accuracy and speed of decisions as a function of different stimu-
lus conditions.

The value of accumulating evidence should be intuitive, but
drift diffusion is only one way that the brain could benefit from
evaluating evidence over time. Any mechanism that interrogates
more than the initial impulse of a stimulus is capable of produc-
ing increases in accuracy with additional time. Classical drift dif-
fusion is specified in continuous time and has no leak of the
integration mechanism, but both discrete and leaky variants of
accumulator models are often capable of fitting speed and accu-
racy data from psychophysical tasks (Usher and McClelland,
2001; Ditterich, 2006). Indeed, large bodies of literature have
focused on distinguishing between these models, and substantial
effort has been put into elaborating these models to include ad-
ditional mechanisms, such as competing accumulators (Smith
and Vickers, 1988; Mazurek et al., 2003; Reddi et al., 2003), and
trial-to-trial parameter variability (Ratcliff, 1978, 2002; Ratcliff
and Rouder, 1998, 2000; Smith and Ratcliff, 2004). It has recently
been argued that the majority of such elaborated models are not
falsifiable given standard tasks and data (Jones and Dzhafarov,
2014).

The ambiguities associated with testing between various for-
mulations of decision making mechanisms comes in part from
the relatively limited amount of data collected on each trial.
While the drift diffusion model acknowledges the noisy time-
varying internal process involved in sensory processing, the
matching experimental paradigm (i.e., some sort of forced choice
task) still only results in a single discrete behavior at the end of
that internal process. This has the advantage of producing data
that are simple to analyze (i.e., whether the choice was accurate,
and when the response was made), but standard paradigms that
wait for the end of the trial to record discrete behavioral outputs
are by construction only indirectly shed light upon the noisy
time-varying internal process meant to be studied within these
paradigms.

Logically, an alternative approach would be to somehow mea-
sure a more continuous series of behavioral outputs in response

to a presented stimulus. This time series could then be used to
better model and understand the noisy internal processes that
underlie sensory information processing. This is unwieldy if one
envisions extending standard tasks to include multiple interme-
diate reports, but is indeed straightforward outside the context of
forced-choice tasks. One such class of tasks that provides a time
series of behavioral observations are tracking tasks (Baddeley et
al., 2003; Burge et al., 2008; Mulligan et al., 2013; Bonnen et al.,
2015, 2017). In these tasks, subjects track targets with their eyes or
by pointing with their finger. These tasks are more natural for
subjects and generate a large amount of behavioral data in a rel-
atively short period of time.

Behavior in such tasks can be modeled by simple dynamic
linear systems and their solutions. For example:

xt � Ft xt�1 � wt; wt � N�0, Qt� (1)

yt � Ht xt � vt; vt � N�0, Rt� (2)

where xt is the stimulus parameter tracked by the subject at time
t, Ft is the process transition matrix, wt is the process noise, yt is
the noisy internal response, Ht is the observation model that
maps the true state space to the observation space, and vt is the
internal noise. Here we assume Gaussian noise models for both
process and internal noise (the former of which can be enforced
in stimulus design). Under this assumption, the Kalman filter
provides the following estimator:

x̂t�t�1 � Ftx̂t�1 (3)

x̂t � x̂t�t�1 � Kt� yt � Htx̂t�t�1� (4)

where x̂t is estimate of xt; x̂t�t�1 is the estimate of xt given all the
information up to but not including the current time step, t; and
Kt is the Kalman gain, which is calculated from estimates of the
covariance (i.e., an estimate of the level of uncertainty in the system).
The Kalman filter solution combines knowledge of the structure
of the linear system in question (i.e., Eqs. 1, 2), as well as incom-
ing sensory information (yt), to make a prediction for the current
time step.

Tracking tasks in conjunction with Kalman filter models (or
state-space models more generally) form the basis for a more
detailed study of the temporal dynamics of sensory processing
(Fig. 1, right). Typically, the Kalman filter is used to produce
estimates of xt, given the noisy measurements yt. However, by
flipping the estimation framework over to become a fitting prob-
lem, Bonnen et al. (2015) showed how the state-space model and
Kalman filter solution can also be used to estimate the parameters
associated with the noisy internal response, given the stimulus
parameter (i.e., the true state xt) and the behavioral response (i.e.,
the estimates, x̂t). The intent of the Kalman filter in this context is
to provide an analysis framework for comparing/modeling re-
sults via the estimation of sensory noise distributions, just as one
might estimate d� values for forced choice tasks using SDT. There
are significant similarities between the Kalman filter model of
tracking and the drift diffusion model of forced choice tasks. A
noisy internal response is also a component of the Kalman filter
model; the internal noise is part of the noisy measurement of
some underlying state of the world. In the drift diffusion frame-
work, the internal noise affects the accumulated evidence and is
related to the behavioral outcome when the process hits the de-
cision bound. The Kalman filter solution, meanwhile, gives an equa-
tion for relating the behavioral estimates to the noisy internal
response over time. The advantage of this approach (tracking psy-
chophysics in conjunction with the Kalman filter for analysis) is that
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the time series of noisy internal responses is not related to a single
behavioral outcome but rather to series of behavioral estimates.

Here we have laid out the math for a linear state-space model
with Gaussian noise and its Kalman filter solution: these are the
standard assumptions for the Kalman filter. We recognize that
such assumptions may be incorrect for some applications, but we
also note that, fortunately, a variety of extensions already exist
which provide solutions for other noise models as well as nonlin-
ear and non-Gaussian state-space models (Sorenson, 1966; Uhl-
mann, 1992; e.g., Julier and Uhlmann, 1997).

Furthermore, work across a range of subfields already uses the
Kalman filter to model neural and behavioral data. Work in re-
inforcement learning uses the Kalman filter (and similar filtering
approaches) to model uncertainty and learning across successive
trials and relate that to neural activity (Sutton and Barto, 1998;
Seo et al., 2009; Gershman, 2015). The brain-machine interface
community uses Kalman filters to perform decoding on neural
activity to control cursors, robotic arms, etc. (Carmena et al.,
2003; Wu et al., 2004). There is behavioral and theoretical evi-
dence for the nervous system approximating the function of Kal-
man filters in implementing state-space estimators (Denève et al.,
2007; Makin et al., 2015). The application we propose here is
distinct in being more pragmatic and more general, putting forth
the Kalman filter (and other filtering solutions to state-space
models) as a framework for relating sensory perception and neu-
ral activity via behavior in the same manner that SDT has been
used in psychophysics. Throughout this section, we have laid out
the advantages to such a framework, in particular that it models
sensory information processing as a noisy time-varying process,
and furthermore that the behavioral observations collected in
such a framework would be collected at a temporal resolution
more aligned with the underlying neural dynamics. It is also
important to note that simpler descriptions of the tracking para-
digm stimulus-response relation (e.g., height of a simple cross-
correlogram) covaries tightly with the principled estimates from
the Kalman framework analysis (Bonnen et al., 2015). Future
work developing this framework might focus in particular on
examining paradigms which include observer prediction and
thus require estimates of the transition matrix or paradigms that
rely on the extensions of the framework (including non-Gaussian
and nonlinear state-space models).

The development of continuous paradigms for relating be-
havior and neural activity is further motivated by a number of
current revisitations of the time course of neural activity and its
correlation with behavior in the context of trial-based paradigms
(Churchland et al., 2010; Goris et al., 2014; Lundqvist et al., 2016;
Bolkan et al., 2017; Schmitt et al., 2017; Yates et al., 2017). Many
classic lines of work have been reopened to reveal that even the
simplest forms of temporal computations linking sensory and
motor stages remain unclear. For example, current debate sur-
rounds whether persistent neural activity actually exists at the
single-trial level during oculomotor working memory tasks or
whether more transient bursts with variable times are the essen-
tial neural substrate (Lundqvist et al., 2016; Bolkan et al., 2017;
Schmitt et al., 2017). It is also contentious as to whether ramping
activity during simple perceptual decisions is a straightforward neu-
ral correlate of evidence accumulation or whether it reflects alternate
dynamics, a mixture of simpler factors, and/or secondary signals not
functionally necessary for performing the task (Gold and Shadlen,
2007; Freedman and Assad, 2016; Huk et al., 2017).

While the primary example we provided for the use of a track-
ing paradigm is focused on the measurement of sensory noise, we
contend that tracking paradigms are much more broadly useful

across sensory, motor, and cognitive domains. For example, on-
going work in the area of visual attention using multiobject track-
ing provides a concrete example of how tracking paradigms prove
useful in more cognitive domains (Kuo et al., 2017). However,
just as the case for smooth pursuit, the dynamics of the motor
response sometimes need to be disambiguated from the sensory
dynamics. For example, Bonnen et al. (2017) teased apart the
relative contributions of the motor plant (arm/hand) and per-
ception to human tracking performance in three dimensions
by flexibly changing the mappings between visual stimuli and
motor responses (something difficult to dissect in the case of
more tightly aligned continuous sensorimotor behaviors, such
as smooth pursuit).

Finally, the development of continuous paradigms is moti-
vated by the need to move beyond the stimulus and analysis
constraints present in conventional trial-based paradigms. While
there are certainly instances in which a discrete trial-based ap-
proach is appropriate particularly for the study of a discrete be-
havior (e.g., saccades, brief periods of smooth pursuit), a variety
of other phenomena have accumulated that are poorly under-
stood and not well integrated, but which are all related to long
time-scale fluctuations in natural stimuli, cortical dynamics, and
perceptual behavior. Most of these do not fit nicely into assump-
tions of short time scales and temporal statistical independence.
We believe that increased development of continuous paradigms
relating behavior and neural activity will advance the under-
standing such phenomena and further extensions of the Kalman
filter analysis framework may provide a powerful tool for dissect-
ing long time-scale cortical dynamics and how the brain pro-
cesses natural stimuli. The following section examines these
phenomena in greater detail.

Removing the independence assumption: natural stimuli,
ongoing brain activity, and serial dependencies in perception
and behavior
A repeated finding using trial-based paradigms is that human
perception and behavior exhibit long-range temporal correla-
tion, manifesting as trial-to-trial correlation in the perceptual
judgments or behavioral outputs. For example, in simple tasks
such as threshold-level detection or reaction time tasks, as well as
reproduction of a particular level of force or a particular time
interval, the trial-to-trial fluctuations of hit rate, reaction time,
force output, and time-interval output exhibit long-range tem-
poral correlation such that their power spectra follow a P � 1/f �

form, where P is power, f is temporal frequency, and � is a scaling
parameter typically between 0 and 1 (Gilden et al., 1995; Gilden,
2001; Monto et al., 2008). Such a 1/f-type power spectrum indi-
cates that performance many trials ago is still correlated with that
in the current trial, with the magnitude of this relation falling off
with increasing time interval. Interestingly, long-range temporal
correlations in reaction time fluctuations are modulated by task
difficulty (Clayton and Frey, 1997) in a manner similar to task
modulations of long-range temporal correlations in neural activ-
ity (He et al., 2010), suggesting that slow fluctuations in neural
activity may underlie trial-to-trial behavioral dependence, a
point we elaborate on below.

Although long-range temporal correlation in human behav-
ioral output has been long described, (positive) trial-to-trial serial
dependence in human perception was only recently discovered
(Chopin and Mamassian, 2012; Fischer and Whitney, 2014;
Liberman et al., 2014), and remains controversial (Maus et al.,
2013; Fritsche et al., 2017). Presumably, this is due to the fact that
perception is also strongly influenced by adaptation, which could

7554 • J. Neurosci., August 29, 2018 • 38(35):7551–7558 Huk et al. • Continuous Behavior, Ongoing Neural Activity, and Natural Stimuli



produce negative trial-to-trial correlation that would cancel out
serial dependence. This may result in the net effect varying across
experiments depending on the exact paradigm and subject pop-
ulation. Nonetheless, there is now strong evidence suggesting the
existence of positive trial-to-trial correlations in both perceptual
and behavioral outcomes.

What is the neural basis of trial-to-trial serial dependence in
perception and behavior? A recent study found that, in an orien-
tation judgment task, orientation signals in V1 measured by fMRI
were positively correlated from trial to trial, similar to the perceptual
decisions made by subjects; in addition, both the behavioral and
neural serial dependence was spatially specific (St John-Saaltink
et al., 2016). More broadly, ongoing brain activity at the level of
population signals recorded by local field potentials (LFPs)
(Manning et al., 2009; Milstein et al., 2009), electrocorticography
(Miller et al., 2009; He et al., 2010), MEG/EEG (Dehghani et al.,
2010; Lin et al., 2016), and fMRI (Bullmore et al., 2001; He, 2011)
exhibit long-range temporal correlations, manifesting as power
spectra following a P � 1/f � form, with � typically between 0 and
2 (He, 2014). This long-range temporal correlation in neural
activity extends to the time scale of tens of seconds, minutes (with
the corresponding 1/f-type power spectrum extending down to
well below 0.1 Hz (He, 2011; Lin et al., 2016; Mitra et al., 2018),
and is thus well positioned to produce trial-to-trial correlations
in ongoing neural activity with standard trial-based behavioral
paradigms. Thus, long-range temporal correlation in neural ac-
tivity is a natural cause for serial dependence in perception and
behavior.

A now-extensive literature describes the rich network struc-
tures embedded in spontaneous fMRI signals (for review, see
Buckner et al., 2013; Petersen and Sporns, 2015; Raichle, 2015).
Spontaneous fMRI signals correlate with the low-frequency (�5
Hz) component of neural field potentials, named “slow cortical
potentials” (SCPs) (He et al., 2008; Pan et al., 2013). Like the
spontaneous fMRI signals, ongoing fluctuations in the SCPs are
also coherent within intrinsic large-scale brain networks (He et
al., 2008). Both types of signals contain very slow fluctuations in
the order of seconds to minutes and exhibit long-range temporal
correlations (He et al., 2010; He, 2011) that are well poised to
drive trial-to-trial serial dependence in perception and behavior.
Consistent with this idea, studies have demonstrated that pre-
stimulus spontaneous fMRI and SCP activity influences percep-
tual outcome and motor output (Boly et al., 2007; Fox et al., 2007;
Hesselmann et al., 2008; Monto et al., 2008; Li et al., 2014; Baria et
al., 2017). However, much work remains to be done to directly
probe the connection between slow fluctuations in fMRI signals and
SCPs and trial-to-trial correlations in perception and behavior.

Along an apparently distinct, but likely related vein, it is well
known that many natural stimuli exhibit temporal or spatial
power spectra following a P � 1/f � form, with � commonly rang-
ing between 0 and 2. In the visual domain, natural movies typi-
cally follow a P � 1/f � type temporal power spectrum (Dong and
Atick, 1995). In the auditory domain, loudness and pitch fluctu-
ations of natural soundscapes, such as urban and rural environ-
mental noise (De Coensel et al., 2003), speech, and music (Voss
and Clarke, 1975), also exhibit 1/f-type temporal power spectra.
Thus, the temporal dynamics of natural stimuli exhibit long-
range temporal correlation, in a manner similar to trial-to-trial
fluctuations of human behavioral output as well as slow, ongoing
neural activity recorded by fMRI or SCP.

Might there be a relationship between these three phenomena:
temporal statistical regularities in natural stimuli, trial-to-trial
correlations in perception and behavior, and long-range tempo-

ral correlations in ongoing neural activity? As mentioned earlier,
slow fluctuations in ongoing neural activity are well positioned to
contribute to serial dependence in perception and behavior.
However, the other link, between neural activity and perception/
behavior on the one hand and natural stimuli on the other hand,
has been more elusive. This is partly because natural stimuli are
less analytically tractable than simpler, artificial stimuli with nar-
rower temporal/spatial frequency bandwidth or the sorts of
Gaussian and trial-to-trial independence assumptions often
made in trial-based frameworks. However, tools for analyzing
neural activity in response to natural stimuli are developing
quickly, such as assessing similarity in evolving neural dynamics
between repeated presentations of the same temporally extended
natural stimulus (Hasson et al., 2010), and encoding models re-
lating multiple stimulus parameters to neural activity at each
time point (Naselaris et al., 2011). In addition, mathematically
constructed artificial stimuli that capture the second-order sta-
tistical structures (i.e., power spectrum, autocorrelation) of nat-
ural stimuli but are nonetheless precisely controlled have proven
to be a powerful tool for probing how the nervous system pro-
cesses statistical regularities present in natural stimuli (Palmer et
al., 2015; Lin et al., 2016). For instance, long-range temporal
correlations exhibited by MEG activity recorded from the human
brain not only reflect long-range temporal correlations in stimu-
lus input but also predict individual subject’s ability to discrimi-
nate different levels of temporal correlations in the stimulus
input (Lin et al., 2016).

Last but not least, being able to make valid predictions about
environmental stimuli confers an obvious evolutionary advan-
tage. So far, studies on predictive processing based on statistical
regularities in stimulus input have typically adopted simple, arti-
ficial stimuli that involve repeated presentations of items or se-
quences (Bekinschtein et al., 2009; Yaron et al., 2012; Gavornik
and Bear, 2014). And many trial-based frameworks (including
the vast majority within sensory and motor neuroscience) en-
force that there is nothing predictable about the next trial based
on the preceding ones. Yet, the long-range temporal correlations
prevalent in natural stimuli suggest that natural stimuli have a
substantial degree of predictability, and it seems plausible that the
nervous system has evolved to capitalize on such dependencies to
make and exploit predictions about its environment. Thus, a key
question for future studies is how predictive processing based on
natural statistical regularities is implemented in the brain. Using
continuous stimuli and paradigms provides a natural arena for
the consideration of temporal correlations in both inputs and
neural activity (Honey et al., 2012; Lin et al., 2016).

Importantly, effective tools for addressing these questions in
both stimulus design and data analysis already exist. As men-
tioned earlier, temporally varying natural stimuli often exhibit
temporal power spectra following a P � 1/f � form, with � typi-
cally ranging between 0 and 2. This second-order statistical struc-
ture is what confers temporal redundancy or predictability for the
continuous natural stimuli. When � is in the range of 0 –1) (in-
deed, anywhere between �1 and 1), the corresponding time-
domain stimulus input forms a stationary sequence (technically
referred to as “fractional Gaussian noise” or fGn). When such a
sequence has zero-mean (the mean can be added back after esti-
mation), the mathematically optimal linear prediction of order K
for the upcoming item in the sequence x̂n based on past samples
{xn�1, xn�2, . . ., xn�K} is written as follows:

x̂n � �k�1

K
ak xn�k (5)
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where the vector �a � {a1, a2, . . ., ak} is to be estimated so as to
minimize the average squared prediction error. Linear algebra
leads to an explicit theoretical solution for â (Scharf and De-
meure, 1991):

â�
theory � R

�K
�1�rx (6)

where �rx is the covariance sequence of process x, and R�K denotes
the K 	 K square matrix, with entry �R

�K�p,p� � �rx��p � p��� for

p, p� � 
1,...,K�2.
When � is in the range 1–2 (indeed, anywhere between 1 and

3), the corresponding time-domain stimulus input forms a non-
stationary sequence (technically referred to as “fractional Brown-
ian motion” or fBm). fBm sequences are cumulative sums of their
corresponding fGn sequences, whose � exponents differ by 2.
The mathematically optimal prediction for an upcoming item in
an fBm sequence can be estimated by the sum of the current item
in the fBm sequence and the optimal prediction for the upcoming
item in the corresponding fGn sequence.

Together, these tools allow the mathematical calculation of
the optimal prediction for the upcoming stimulus input given the
past history of any stimulus sequence exhibiting a P � 1/f � -type
power spectrum, where � � (�1, 3). Using this mathematical
framework, a recent study created a set of stimulus sequences
exhibiting 1/f � temporal power spectra, where � � (0, 2). To dis-
sociate sensory processing of the current stimulus input from
predictive processing of the upcoming stimulus input, these se-
quences converged onto the same value for the penultimate item,
while their different history prescribed different values for the
expected upcoming item. The actually presented last item was
randomly drawn from a fixed distribution and subjects gave sur-
prise ratings for this last item based on the previous stimulus
history. Analysis of these psychophysical data suggested that hu-
man subjects indeed capitalized on the natural temporal statisti-
cal regularities to make valid predictions about the upcoming
item (Maniscalco et al., 2018). In addition, concurrent MEG re-
cordings revealed that slow, arrhythmic activity in the SCP range
reflected integration of stimulus sequence history over time, and
that such history integration contained in slow neural activity
predicted the expected value of the upcoming stimulus input,
providing a concrete computational mechanism for forming pre-
dictions based on natural statistical regularities.

Conclusion: moving to naturalistic and continuous stimuli,
behavior, and neural measurements without a loss of
quantitative tractability
The time seems ripe to consider ways of doing experiments that
allow for continuous stimuli, behaviors, and assessments of
neural activity. Hopefully, we have shown that the analytic ma-
chinery for such designs is rooted in the same tools used within
trial-based paradigms for understanding the neural basis of per-
ception and cognition. The idea is certainly not to call for the
replacement of conventional trial-based paradigms, but to high-
light that continuous approaches can directly complement what
can be learned from punctuate trials, ballistic behaviors, and/or
brief measures of activity. In this review, we have discussed the
following: (1) analytic frameworks that are amenable to contin-
uous input– output relations, while still being relatable to the
signal-detection framework; (2) the existence of behavioral and
neural responses that do not conform to the time scales of indi-
vidual trials, and thus violate trial-based independence assump-
tions; and (3) the statistics of natural stimuli also span timescales

distinct from trials, and thus the nervous system typically func-
tions with inputs and goals that are not comprehensively probed
within standard experimental paradigms and trials.

We propose a synthesis of these sorts of efforts into a generic
framework that characterizes the broadband properties of stimuli
(as opposed to attempting to simplify these properties), and
which measures continuous neural activity and behavioral out-
puts (instead of summarizing neural activity with simple statistics
and/or considering binary behavioral outputs). With these phi-
losophies of stimulus-task design and measurement in place, the
analytic framework appears within reach. We conclude by iden-
tifying three key areas for continued development. First, the Kal-
man filter framework initially proposed by Bonnen et al. (2015)
implements the simplest proof-of-concept assuming the stimu-
lus is a random walk composed of Gaussian noise. A variety of
extensions of the original Kalman filter exist, extending the solu-
tion to nonlinear and non-Gaussian state-space models (Soren-
son, 1966; Uhlmann, 1992; Julier and Uhlmann, 1997). Future
work will need to both identify appropriate stimuli and the cor-
responding Kalman filter solutions. Second, tools for analyzing
temporally continuous neural data will need to be adapted. There
are several promising instances of such tools, from the GLM
framework used to characterize spike trains, to the frequency-
based tools used for field potential recordings. However, linking
these tools together and to behavior will better integrate this en-
deavor. Third, the larger experimental design and analysis loop
needs to be knitted tighter, with the previously discussed analytic
developments pointing to a class of broadband and/or continu-
ous stimuli and behavioral measures that are not just appropriate
but maximally efficient and/or insightful.

It is also important to note that the use of continuous behavioral
responses has long been seen as valuable for insight into how the
brain works. In one line of work, limb movements have been recog-
nized as providing richer insight than discrete button presses or fast
saccadic eye movements because of their more continuous and
slower nature (Wolpert and Ghahramani, 2000; e.g., Janssen and
Scherberger, 2015). These are elegant experiments, working within
the confines of trial-based designs and analyses to show the isolated
power of even brief bursts of continuous output.

And of course, extensive work has focused on smooth pursuit
eye movements (Lisberger et al., 1987; Barnes and Ruddock,
1989; Boudet et al., 2006; Lisberger, 2015; Liu et al., 2016;
Mukherjee et al., 2017). This line of work is even more concep-
tually related to our framework. Although it is trial-based, it in-
volves the continuous presentation of a moving stimulus and the
corresponding analysis of eye movement timeseries. As opposed
to “lower” oculomotor behaviors, the task is volitional, in that
subjects can choose whether or not to pursue a target. Further-
more, the moving target can be manipulated and perturbed to
further probe the sensorimotor loop. Our approach expands
upon the impacts of pursuit paradigms, as it allows focus on
longer periods of behavior and far more flexible stimulus-
response mappings. For example, subjects need not directly track
motion with the movement of their eyes or finger, and tasks can
include more strategic components, such as following the center
of an expanding optic flow field (Knoell et al., 2017). Thus, our
proposal certainly does not stand in isolation but may generalize
the power of trial-based and specialized continuous behaviors to
richer representations of the environment, and a wider range of
links between sensation and action.

In conclusion, the convenience of chopping inputs and out-
puts up into trials makes a lot of sense for allowing straightfor-
ward analyses of both brain function and behavior. However, at
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this time, enough pressure has accumulated to suggest that strict
adherence to the trial is fated to providing only a partial and
somewhat artificial understanding of how intelligent actions are
generated by the brain. Somehow, the brain grapples with slow
internal fluctuations in its own activity, slow external fluctuations
in sensory stimuli, and the need to not just respond continuously,
but to do so in a predictive manner. The analysis of natural sta-
tistics, naturalistic tasks, and/or slow fluctuations in brain activity
should no longer be seen as niche enterprises, but rather as the
starting points for important generalizations of our tools and
subsequent understanding.
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