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Abstract In the natural environment, we often form stable perceptual experiences from ambig-
uous and fleeting sensory inputs. Which neural activity underlies the content of perception and 
which neural activity supports perceptual stability remains an open question. We used a bistable 
perception paradigm involving ambiguous images to behaviorally dissociate perceptual content 
from perceptual stability, and magnetoencephalography to measure whole-brain neural dynamics 
in humans. Combining multivariate decoding and neural state-space analyses, we found frequency-
band-specific neural signatures that underlie the content of perception and promote perceptual 
stability, respectively. Across different types of images, non-oscillatory neural activity in the slow 
cortical potential (<5 Hz) range supported the content of perception. Perceptual stability was 
additionally influenced by the amplitude of alpha and beta oscillations. In addition, neural activity 
underlying perceptual memory, which supports perceptual stability when sensory input is temporally 
removed from view, also encodes elapsed time. Together, these results reveal distinct neural mecha-
nisms that support the content versus stability of visual perception.

Editor's evaluation
Bistable visual perception offers a unique window to study how perception arises and changes via an 
interaction between bottom-up and top-down processes. In three Magnetoencephalography (MEG) 
experiments with advanced neural state space analysis, this study demonstrates that two key aspects 
of bistable visual perception – perceptual content and perceptual stability – are mediated by slow 
cortical potential (SCP) and α-β-band neural oscillations, respectively. The findings will be of interest 
for many fields, including those studying perception, consciousness, and attention.

Introduction
How vivid visual perceptual experiences are generated by the brain remains a central question in 
neuroscience. There are two critical functions that the visual perceptual system is able to accomplish: 
the first is to generate the specific content of perceptual experience (such as seeing a predator); the 
second is to maintain a stable perceptual experience despite noisy and unstable retinal input due to 
constant head and eye movements and complexities of the natural environment involving occlusion, 
shading, and dynamic changes of sensory input (e.g., the predator is camouflaged and hidden in 
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the bush). Here, we investigate neural mechanisms giving rise to specific perceptual content and 
supporting perceptual stability in the human brain.

Motivated by several strands of previous work, we hypothesized that there might be different 
components of electrophysiological neural activities that support perceptual content and perceptual 
stability, respectively. First, previous studies using multivariate analysis to decode perceptual content 
based on electroencephalography/magnetoencephalography (EEG/MEG) activity have typically 
reported greater successes when the decoder’s input was raw filtered field potentials in the rela-
tively low (<30 Hz) frequency range (e.g., Carlson et al., 2013; Salti et al., 2015; King et al., 2016). 
Further, studies using frequency-band-specific analysis have shown that the ability to decode percep-
tual content is contributed most by the slow cortical potential (SCP, <5 Hz) frequency range (Baria 
et al., 2017; Flounders et al., 2019). This is consistent with the 1/f distribution of EEG/MEG power 
spectrum suggesting that the SCP band contributes most to the power in the event-related potential/
field (ERP/ERF) frequency range (He et al., 2010; He, 2014; Donoghue et al., 2020).

Second, a line of work focused on brain oscillations has shown that moment-to-moment fluctua-
tions of alpha oscillation amplitude in sensory cortices modulate local cortical excitability in a manner 
that transcends specific stimulus/perceptual contents (Samaha et al., 2020). In addition, alpha and 
beta oscillations can carry top-down feedback influences (van Kerkoerle et al., 2014; Michalareas 
et al., 2016), and top-down feedback may facilitate resolving perceptual ambiguity by carrying infor-
mation consistent with prior knowledge (Cavanagh, 1991; Yuille and Kersten, 2006). We therefore 
hypothesized that there might exist a frequency-band separation between neural activity supporting 
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Figure 1. Paradigm and behavioral results. (A) In the Ambiguous condition, bistable images were presented for 
60 s each, and subjects pressed buttons to indicate their current percept. (B) Percentage of time spent in each 
perceptual state during the Ambiguous condition. (C) In the Unambiguous condition, bistable images which were 
modified to reduce their ambiguity were presented. (D) Percentage of valid trials for each image type during 
the Unambiguous condition. Valid trials consisted of the subject pressing the button only once for the intended 
percept. (E) In the Discontinuous condition, ambiguous images were shown nine times with interleaving blank 
periods. (F) Percentage of blank periods that were classified as Stable, Unstable, or Missing. ‘Stable’ indicates that 
perception was the same before and after the blank period, ‘Unstable’ that it was different, and ‘missing’ indicates 
that no button press was recorded during the pre or post image presentation period. (B, D, F) Dots indicate 
individual subjects; bars and error bars indicate group mean and standard error of the mean (SEM).

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. Individual-level power spectra and group-level duration histograms.

https://doi.org/10.7554/eLife.78108
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perceptual content and neural activity supporting perceptual stability, with the former residing in the 
non-oscillatory activity in the SCP range, and the latter predominantly residing in oscillatory activity in 
the alpha/beta range.

To test this hypothesis, we recorded whole-head MEG while participants performed a bistable 
visual perception task involving two different ambiguous figures (Necker cube and Rubin face–vase 
illusion). Data from these two images were separately analyzed, providing a within-study reproduc-
ibility and generalizability check. In two different conditions, the images were either continuously 
presented (Ambiguous condition, Figure 1A) or intermittently presented (Discontinuous condition, 
Figure 1E). The Ambiguous condition allowed us to dissociate perceptual content (perceiving one or 
the other interpretation) from perceptual stability (how long a percept lasts). The Discontinuous condi-
tion allowed us to investigate the neural underpinnings of perceptual memory: previous research has 
shown that perceptual alternations slow down during intermittent presentation and that a perceptual 
memory trace exists in the intervening blank periods such that the recently experienced percept is 
likely reinstated when the image reappears (Orbach et al., 1966; Leopold et al., 2002; Pearson and 
Brascamp, 2008). This phenomenon provides a window into neural mechanisms supporting percep-
tual stability when sensory input is both ambiguous and fleeting, as often is the case in natural vision. 
Finally, to test the generalizability of the identified neural correlate of perceptual content, participants 
additionally performed a task in which modified versions of the Necker cube and Rubin face–vase 
images with ambiguity removed (Wang et al., 2013) were presented and perceptual content varied 
with the actual physical stimulus (Unambiguous condition, Figure 1C).

To test our hypothesis, we combined multivariate decoding with an innovative multivariate regres-
sion approach which allowed us to identify separate neural subspaces relevant to the encoding of 
different types of behavioral information that are simultaneously present in the same task (Mante 
et  al., 2013)—specifically, perceptual content and perceptual switching dynamics in the present 
task. Across two different task conditions with different levels of stimulus ambiguity (Ambiguous 
and Unambiguous), we found that non-oscillatory neural activity in the SCP range, but not alpha or 
beta oscillations, encoded perceptual content. Furthermore, across both Ambiguous and Discontin-
uous conditions, we found that the fluctuations of alpha and beta amplitudes modulated perceptual 
stability and perceptual memory. Interestingly, we also found that SCP modulated perceptual stability, 
although with less spatial consistency across subjects than alpha and beta oscillations. These results 
reveal an intriguing frequency-domain separation of neural activity encoding perceptual content and 
that supporting perceptual stability.

Results
Task paradigm and behavioral results
We recorded 18 subjects with whole-head MEG (CTF, 272 functional axial gradiometers) performing 
3 conditions of a visual perception task involving 2 commonly studied ambiguous figures (Necker 
cube and Rubin face–vase illusion). The first condition consists of the classic bistable perception task 
(Ambiguous, Figure 1A), in which subjects viewed ambiguous images for 60 s at a time and used 
button presses to indicate their spontaneous perceptual switches (with three buttons corresponding 
to two of the possible percepts and an ‘unsure’ option). In the second condition (Unambiguous, 
Figure 1C), subjects viewed modified versions of these images for 5 s at a time, which enhance one 
of the possible interpretations and largely abolish perceptual switching (Wang et al., 2013); subjects 
indicated their percepts in a similar fashion as before. In the final condition (Discontinuous, Figure 1E), 
each ambiguous figure was presented repeatedly with interleaving blank periods, allowing us to inves-
tigate neural underpinnings of perceptual memory during the blank periods (Leopold et al., 2002; 
Pearson and Brascamp, 2008); subjects indicated their percepts whenever the image was in view.

During the Ambiguous condition (Figure 1A, B) perceptual switching occurred, with group-level 
results showing that each of the possible percepts was perceived (on average >25% of the time), 
and that subjects were rarely unsure of which percept they were experiencing (<10% occurrence, 
these time periods were removed from further analyses). Modifying the images to be unambiguous 
(Figure 1C, D) was successful, as evidenced by subjects having on average >80% valid trials (defined 
as trials with only one button press indicating the intended percept). In the Discontinuous condition, 
we found an increased likelihood that perception remained stable across the blank period for the 

https://doi.org/10.7554/eLife.78108
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Necker cube (one-tailed Wilcoxon sign-rank (17) = 116.5, p = 0.031) but not for the Rubin face–vase 
image (one-tailed Wilcoxon sign-rank (17) = 71.5, p = 0.736).

Together, these behavioral results demonstrate the classic bistable perception phenomenon in the 
Ambiguous condition, successful disambiguation of the images in the Unambiguous condition, and 
a means to investigate perceptual memory by contrasting stable- and unstable-blank periods in the 
Discontinuous condition. Importantly, the use of two different ambiguous figures in all three condi-
tions allowed us to test whether the neural findings are reproducible and generalizable across the 
specific stimulus characteristics. Here, taking advantage of the large-scale neural dynamics recorded 
by whole-head MEG, we aimed to dissociate dynamical neural activity underlying perceptual content 
and supporting perceptual stability, respectively.

Perceptual content can be decoded from SCP but not amplitude of 
band-limited oscillations
In the classic bistable perception task, perceptual content experienced by the subject continuously 
alternates between two possible outcomes while the sensory input stays constant. This allows the 
investigation of the neural correlates of the content of conscious perception while controlling for low-
level sensory processing. To this end, we applied time-resolved multivariate decoding to whole-brain 
MEG data (for details, see Methods). We tested three components of neural field potentials—SCP 
(<5 Hz), alpha-band amplitude (amplitude envelope of 8–13 Hz filtered data) and beta-band ampli-
tude (amplitude envelope of 13–30 Hz filtered data)—in their ability to distinguish between the two 
percepts that are alternatively experienced for each ambiguous figure. The SCP activity corresponds 
to the low-frequency component of the broadband, non-oscillatory (i.e., aperiodic) activity (He et al., 
2010; He, 2014), while the alpha and beta bands have prominent oscillatory activity (Figure 1—figure 
supplement 1A, B). After extracting the relevant neural feature, perceptual content decoding was 
performed using a fourfold cross-validated linear support vector machine (SVM), with significance 
determined using cluster-based permutation testing that corrects for multiple comparisons across 
time.

To investigate neural activity underlying specific perceptual content, we selected time periods 
(‘subtrials’) that were preceded and followed by button presses for two different percepts (i.e., 
excluding periods preceded or followed by unsure presses, or at the beginning or end of the image 
presentation) and sorted them into two groups. Thus, each subtrial begins with a button press indi-
cating the relevant percept and ends with a button press that indicates a switch to the opposite 
percept. These subtrials were of different lengths (Figure 1—figure supplement 1C, D), as percept 
duration is highly variable during spontaneous bistable perception—a topic we will address in the 
following section. To decode perceptual content, we then subsampled each subtrial by taking 100 
equally spaced time points from the beginning to the end of that subtrial (henceforth referred to 
as percentile of a percept). This way, we tested whether a decoder trained using neural features 
recorded at the beginning (/middle/end) of a subtrial generalized to the beginning (/middle/end) of 
other subtrials, even if they were of different lengths (Figure 2A).

Decoding accuracies over the course of a percept for the three different neural features are shown 
in Figure 2C, left column. Significant decoding of perceptual content is found for SCP, but not alpha 
or beta amplitude (except for a very small temporal cluster for the face–vase image), and SCP shows 
significantly stronger decoding than alpha or beta amplitude (Figure  2—figure supplement 1) 
suggesting that the currently experienced percept is most strongly encoded in SCP activity. These 
findings are consistent with previous results using other visual perceptual tasks (Baria et al., 2017; 
Flounders et  al., 2019). To shed light on whether the neural representation of the percept stays 
stable over the duration of the percept or changes constantly over time, we tested the temporal 
generalization of the decoder, whereby decoders trained at each time point are tested at all other 
time points (King and Dehaene, 2014). We observed broad decoder temporal generalization in the 
SCP band for both the Necker cube and Rubin face–vase illusion (Figure 2C, right column), especially 
from 20th to 80th percentile of the percept duration. This suggests that neural representation under-
lying perceptual content, except at the very beginning and end of a percept, is relatively stable over 
time regardless of percept duration, and localizes to the SCP band in the frequency domain.

We next tested whether a similar pattern of findings exists when stimulus ambiguity is removed, 
by decoding perceptual content using data from the Unambiguous condition. To this end, we 
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selected valid trials (wherein the subject only had one button press indicating the intended percept), 
which account for the vast majority of all trials (Figure  1D), and constructed decoders to distin-
guish between the two different perceptual contents which coincided with different image inputs 
(i.e., decoding between the two versions of face–vase image, and between the two versions of cube 
image, Figure 2B). Similar to the Ambiguous condition, significant perceptual content decoding was 
obtained using SCP activity, but not alpha or beta amplitude (except for one small temporal cluster 
at image onset for alpha amplitude, face–vase image) (Figure 2D, left column) and decoding was 
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Figure 2. The content of subjective perception is encoded in slow cortical potential (SCP) activity. (A) In the Ambiguous condition, subjects continuously 
reported their current perception using button presses. Neural activity during each percept was split into 100 percentiles according to time elapsed, 
and percept was then decoded at each temporal percentile. (B) In the Unambiguous condition, different disambiguated images were shown that 
emphasized one of the two percepts. For valid trials in which subjects’ reported percept matched the intended percept (see Figure 1D), image content 
was decoded separately at each time point during image presentation. (C) (Left) Decoding accuracy for perceptual content during the time course of a 
percept. Significant temporal clusters of percept decoding exist for both images using SCP as the decoder input, but not when alpha or beta amplitude 
was used as decoder input. (Right) Temporal generalization matrices. Significant clusters are outlined, showing generalization across a large proportion 
of the percept duration. (D) (Left) Decoding accuracy for unambiguous images during their presentation. Significant temporal clusters of image/percept 
decoding exist in the SCP range throughout image presentation, but not for alpha/beta amplitude. (Right) Temporal generalization matrices showing 
significant generalization across a large proportion of the image presentation duration.

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Slow cortical potential (SCP) has significantly higher decoding than alpha or beta oscillations in both the ambiguous (top) and 
unambiguous (bottom) conditions.

https://doi.org/10.7554/eLife.78108
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stronger in the SCP band (Figure 2—figure supplement 1). Decoding accuracy in the SCP band 
was highest in the first second after image onset and then drops to a lower level (likely due to neural 
adaptation). The higher decoding accuracy in the Unambiguous condition as compared to the Ambig-
uous condition is likely due to the differences in sensory input that coincides with different perceptual 
contents, as well as consistent timing across all trials (all image presentations last 5 s, as opposed 
to variable percept durations in the Ambiguous condition). Lastly, as in the Ambiguous condition, 
the SCP decoder of perceptual content generalized well across time in the Unambiguous condition 
(Figure 2D, right column), suggesting that the underlying neural code is stable over time after the 
very initial image onset-related activity.

Together, these results show that perceptual content information is decodable from SCP activity, 
but not from the amplitude of alpha or beta oscillations, regardless of whether sensory input is ambig-
uous or not. In the next section, we investigate neural processes controlling the stability of a percept 
as compared to the neural processes underlying the content of that percept.

Defining a behaviorally relevant neural subspace
To simultaneously extract neural activity relevant to different behavioral metrics—here, the content of 
perception and the dynamics of perceptual switching—we adapted a multivariate analysis approach 
recently developed in animal neurophysiology (‘state-space analysis’) (Sussillo, 2014). In this frame-
work, multivariate neural activity (across neurons or sensors) at each time point corresponds to a 
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specific location in the neural state space, where each dimension is a neuron/sensor. Because different 
neurons/sensors are highly correlated and not all are informative for the behavior of interest, dimen-
sionality reduction methods (such as principal component analysis, PCA) are typically applied to 
identify a low-dimensional subspace capturing the majority of the variance in the data and/or most 
relevant to the behavior in question (Briggman et al., 2005; Churchland et al., 2012; Stokes et al., 
2013; Baria et al., 2017). Here, following earlier studies (Mante et al., 2013; Kayser et al., 2016), 
we identify the neural subspace most relevant to a particular behavioral metric by conducting a multi-
linear regression using orthogonal, task-related axes that capture perceptual content and percep-
tual switching dynamics, as described in detail below. Importantly, unlike the decoding approach 
employed in the earlier analysis, where a different decoder is trained for each time point within a trial 
and decoder weights are sometimes difficult to interpret (Haufe et al., 2014), the state-space analysis 
aims to identify a neural subspace that is unchanging across time, wherein the trajectory of neural 
activity informs about changes in behavior across time.

For both the Ambiguous and Discontinuous conditions, we defined a set of behavioral axes 
capturing both perceptual content and perceptual switching dynamics (Figure 3A). For the Ambiguous 
condition, these consisted of a Type Axis, which was a binary (0 or 1) variable indicating the current 
perceptual content; a Duration Axis, indicating the overall duration of the current percept; a Switch 
Axis, indicating the temporal distance to a reported perceptual switch (i.e., button press); and, finally, 
a Direction Axis, a binary variable indicating whether the current percept is stabilizing or destabilizing 
(operationalized as the first half vs. second half of a percept). Both the Switch and Duration axes had 
values normalized to the range of [0, 1], such that for the Switch axis, time points corresponding to 
button presses are 0 and time points furthest away from button presses within each percept are 1; for 
the Duration axis, the shorted and longest percept durations for a particular subject are coded as 0 
and 1, respectively. Thus, the Switch, Duration, and Direction axes together capture different aspects 
of the perceptual switching dynamic, while the Type axis captures the specific perceptual content.

For the Discontinuous condition, because we are interested in neural activity underlying the 
perceptual memory trace, only blank periods were analyzed. Two behavioral axes were defined to 
capture the content of perception: Pre and Post, which are binary variables indicating the perceptual 
content before and after the blank period, respectively. Two behavioral axes were defined to capture 
the dynamics of perceptual memory: a Memory axis, which is a binary variable indicating whether a 
perceptual memory trace is present or absent (defined by whether the reported perceptual content 
before and after the blank period is the same); and a Blank axis, which is a linearly ramping variable 
between 0 and 1 from the beginning to the end of each blank period, indicating how long the percep-
tual memory trace, if present, has last since image offset.

To extract the neural subspace most relevant to each behavioral metric, half of the data were 
used as a training set and a multilinear regression model was fit for each sensor (Figure 3B). The β 
weights from the regression model provide an estimate of the relative contributions of the activity of 
that sensor to each of the different behavioral metrics. The set of weights across sensors for a partic-
ular behavioral metric thus defines the identified neural subspace. The held-out test data are then 
projected into that subspace (Figure 3C), which provides a prediction of the value of that behavioral 
metric at each time point, solely based on the MEG activity. Comparing the actual and predicted 
behavior (Figure 3D) yields a cross-validated estimate of how much information the identified neural 
subspace has about that aspect of behavior.

Lastly, the set of β weights (with size equal to the number of MEG sensors) for each behavioral 
metric can also be inspected for consistency at the group level (topography in Figure 3B) to deter-
mine whether neural activity from a particular sensor significantly contributes to a particular behavioral 
metric. In sum, this state-space analysis allows us to simultaneously identify neural underpinnings of 
multiple aspects of behavior at once.

Role of neural oscillations in perceptual switching dynamics during 
bistable perception
We first applied the state-space analysis to data from the Ambiguous condition. For perceptual content 
(‘Type’ axis), we found that the neural subspace identified using the SCP activity allows robust predic-
tion of moment-to-moment perceptual content experienced by the subject for the face–vase image 
(Figure 4—figure supplement 1B, ‘Type’ column), with highly consistent sensor-level weights across 

https://doi.org/10.7554/eLife.78108
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subjects (Figure 4—figure supplement 1A, ‘Type’ column). Interestingly, the results did not reach 
significance for the cube image, consistent with weaker perceptual content decoding for the cube 
than face–vase image (Figure 2A) and potentially due to the decoder being retrained at each time 
point whereas the subspace is fixed across time points. Using amplitude of alpha or beta oscillations, 
we could not achieve significant prediction of perceptual content (except for a small temporal cluster 
for beta amplitude, cube image) (Figure 4—figure supplement 1B, ‘Type’ column) and there were 
no consistent weights across subjects (Figure 4—figure supplement 1A, ‘Type’ column). Together, 
these results reinforce the impression from the decoding results showing that perceptual content 
information largely localizes to the SCP band, manifesting as moment-to-moment changes in large-
scale SCP activity.

Focusing on the ‘Duration’ axis, which captures variability in the percept durations, we found consis-
tent group-level β weights in occipital cortex for alpha and beta amplitudes, whereby stronger neural 
oscillations were associated with longer-lasting percepts (Figure 4A, left; reproduced in Figure 4—
figure supplement 1A, ‘Duration’ column). The ‘Duration’ neural subspace extracted from alpha 
and beta amplitudes contained significant predictive information for percept durations in the left-out 
test dataset, as evidenced by highly significant correlations between the actual percept duration and 
predicted percept duration according to neural data collected at different time points during a percept 
(Figure  4A, right, showing trial-by-trial correlation; Figure  4—figure supplement 1B, ‘Duration’ 
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Figure 4. Alpha and beta amplitudes are involved in the switching process and perceptual memory trace. (A) (Left) Group-average β weights for 
Duration axis in the ambiguous condition. Sensors whose β weights are significantly different from zero (Wilcoxon signed-rank test, cluster-corrected, 
p < 0.05) are marked with x. (Right) Mean Fisher z-transformed Spearman rho values, obtained by correlating predicted and actual behavioral values 
across trials for each subject. Shaded areas show group-level standard error of mean (SEM). Significant time points (p < 0.05, cluster-based permutation 
test) are indicated by the horizontal red bars. (B) (Left) Group-average β weights for Memory axis in the discontinuous condition. Sensors whose group-
level β weights are significantly different from zero (Wilcoxon signed-rank test, cluster-corrected, p < 0.05) are marked with x. (Right) Difference in 
neural activity projected onto the Memory axis between the Stable and Unstable trials (i.e., blank periods sandwiched by the same percept or different 
percepts). Significant differences (p < 0.05, cluster-based permutation test) between them are indicated by red horizontal bars.

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. Complete neural subspace results for the Ambiguous condition.

Figure supplement 2. Complete neural subspace results for the Discontinuous condition.

https://doi.org/10.7554/eLife.78108


 Research article﻿﻿﻿﻿﻿﻿ Neuroscience

Hardstone et al. eLife 2022;11:e78108. DOI: https://doi.org/10.7554/eLife.78108 � 9 of 20

column, showing predicted percept durations for trials with long vs. short actual percept durations). 
These results also show that neural activity related to perceptual stability is relatively persistent across 
time, evident from the beginning to the end of a percept. For SCP activity, significant predictive infor-
mation over time was found for both images (Figure 4—figure supplement 1B, ‘Duration’ column); 
however, there was little consistency between β weights across subjects (Figure 4—figure supple-
ment 1A, ‘Duration’ column), or between the group-level β weight maps for the two images (cosine 
similarity, N = 272 sensors, cos θ = 0.08, p = 0.37 assessed by a permutation test). By contrast, the 
group-level β weight maps for the ‘Duration’ axis are highly correlated between the two images for 
alpha amplitude (cos θ = 0.83, p = 0.02) and beta amplitude (cos θ = 0.82, p = 0.02). Therefore, we 
conclude that information about perceptual stability, as captured by percept duration, is primarily 
carried by the amplitude of alpha- and beta-band activity. Although this information also exists in the 
SCP band, it is encoded in a less consistent manner across subjects and across different image inputs.

For the ‘Switch’ and ‘Direction’ axes, we found that all three neural features were significantly 
predictive of behavior (Figure 4—figure supplement 1B, ‘Switch’ and ‘Direction’ columns), suggesting 
that the neural representation of these processes is distributed across multiple frequency bands. For 
the ‘Direction’ axis, group-level β weight maps for SCP and beta amplitude show significant sensors 
lateralized over the left hemisphere whose spatial distribution could be related to the button press 
response (carried out using the right hand). For the ‘Switch’ axis, the SCP-band β weight maps are 
consistent with a dipole in the midline region corresponding to a potential source in the supple-
mentary motor area; alpha/beta amplitudes have positive β weights suggesting that the amplitudes 
decrease around the time of the perceptual switch, consistent with earlier findings (de Jong et al., 
2016). Together, these findings provide a methodological validation of the present analysis approach; 
however, given the potential motor contribution to the results obtained from the ‘Switch’ and ‘Direc-
tion’ behavioral axes, we do not emphasize these findings henceforth.

Role of neural oscillations in maintaining perceptual memory
Finally, we applied the state-space analysis to data from the Discontinuous condition, focusing on the 
blank periods (6 s each) between repeated image presentations (Figure 1E). For perceptual content 
reported before and after each blank period (‘Pre’ and ‘Post’ axes), we only found small temporal 
clusters of significant prediction in the test dataset for beta amplitude-defined neural subspace in the 
case of cube image (Figure 4—figure supplement 2B, ‘Pre’ and ‘Post’ columns). Overall, the infor-
mation contained in neural activity during blank periods about perceptual content experienced earlier 
or later is weak, which is not surprising, given that there is no active perception related to the cube or 
face–vase image per se during this period.

However, all three neural features carried significant information about how far into the blank 
period the time point was (i.e., the temporal distance to previous image offset), suggesting a strong 
timing mechanism distributed across frequency bands. This is evident in the ability of the neural 
subspaces to predict timing information in the left-out test dataset (Figure 4—figure supplement 2B, 
‘Blank’ column), as well as consistent sensor-level β weight topography across subjects (Figure 4—
figure supplement 2A, ‘Blank’ column). The SCP topography shows a midline dipole, and the alpha/
beta topographies show widespread sensors whose oscillatory amplitudes decrease as time passes. 
Because the blank periods have a constant duration (6 s) before the next image onset, these results are 
consistent with previous reports of a contingent negative variation potential (CNV, an SCP activity with 
generators in the anterior cingulate cortex) and alpha amplitude decreases being neural correlates of 
temporal anticipation (Nobre and van Ede, 2018).

The most informative behavioral metric for the Discontinuous condition is the ‘Memory’ axis as 
it indicates the presence or absence of a perceptual memory trace (Figure  3A). Here, we found 
significant temporal clusters of prediction in the test dataset using alpha and beta amplitudes, but 
not SCP activity (which only showed small temporal clusters for the Cube image) (Figure 4—figure 
supplement 2B, ‘Memory’ column; alpha and beta results reproduced in Figure 4B). The consistency 
of the group-level β weights across images was also stronger for alpha (cos θ = 0.65, p = 0.08) and 
beta amplitudes (cos θ = 0.75, p = 0.10) than for SCP activity (cos θ = −0.11, p = 0.71), although the 
consistency did not reach significance in any of the neural features. Interestingly, the group-level β 
weight vectors are highly correlated between the Memory axis and the Blank axis for alpha and beta 
amplitudes (alpha amplitude: face–vase, cos θ = 0.84, p < 0.01; cube: cos θ = 0.82, p = 0.01; beta 
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amplitude: face–vase, cos θ = 0.83, p = 0.02, cube: cos θ = 0.86, p < 0.01), suggesting a strong timing 
component to the memory trace. The negative β weights for the oscillation amplitudes (Figure 4B, 
left) show that alpha and beta oscillations are weaker when there is a perceptual memory trace.

Interestingly, the encoding of perceptual memory during the blank periods occurs first in beta 
activity (at ~0.5–1.5 s after blank onset), followed by alpha activity (at ~1.5–3 s), and is not significant 
in either frequency band during the latter half of the blank period (3–6 s) (Figure 4B and Figure 4—
figure supplement 2). This transient encoding of perceptual memory in neural dynamics is consistent 
with a recent EEG study using a similar paradigm (Zhu et al., 2022). Speculatively, after the transient 
encoding in beta and alpha activities, perceptual memory trace might be maintained in short-term 
synaptic plasticity within the network in an ‘activity-silent’ state without measurable signatures in 
active neural dynamics (Mongillo et al., 2008; Stokes et al., 2013; Rose et al., 2016).

Together with the earlier results showing that stronger alpha/beta amplitudes promote perceptual 
stability (i.e., longer-lasting percepts) during continuous bistable perception (Figure 4A), these results 
show that the neural mechanisms supporting perceptual memory localize to the same frequency 
bands, but have different circuit-level mechanisms. In addition, sensors supporting perceptual memory 
(when the stimulus is temporarily removed from view) reside in more anterior regions than those 
supporting perceptual stability (when the stimulus is in view) (compare topoplots between Figure 4A, 
B), suggesting that higher-order brain circuits are recruited to maintain a perceptual memory trace 
when sensory input is absent, consistent with previous fMRI findings (Wang et al., 2013).

Discussion
In this study, we dissected the roles that different types of neural activity play in perception. We 
found evidence that perceptual content is predominantly encoded in the SCP (<5 Hz) range, and no 
evidence of perceptual content encoding in the amplitude of alpha and beta oscillations. This was 
the case regardless of whether the sensory input is ambiguous or unambiguous. We additionally 
found that SCP activity along with the amplitude of alpha and beta oscillations encoded aspects of 
perceptual switching, including the distance to a switch and whether the current percept is stabilizing 
or destabilizing. However, information about how long the current percept would last and whether a 
perceptual memory trace would occur if the stimulus is temporally removed from view was primarily 
encoded in alpha and beta amplitudes. Together, these results show a frequency-band separation of 
information related to perceptual content and perceptual stability, with the former encoded in raw 
fluctuations of low-frequency SCP activity, and the latter primarily influenced by the amplitude fluctu-
ations of alpha and beta oscillations.

Previous studies on bistable perception have typically focused on one aspect of perceptual behavior 
at a time, such as perceptual content or perceptual switching. By using a novel neural state-space 
analysis approach, we were able to simultaneously extract components of neural activity relevant to 
different aspects of perceptual behavior that all vary across time/trials and are mutually independent. 
Additionally, this approach can uncover important relationships between neural activity underlying 
different aspects of behavior. For example, for alpha and beta amplitudes, the state space extracted 
for ‘Blank’ and ‘Memory’ axes in the Discontinuous condition are strongly correlated, suggesting a 
strong timing mechanism to how perceptual memory is encoded during the blank period (i.e., the 
neural activity pattern associated with the presence of a perceptual memory trace is similar to the 
activity pattern that increases over time during the blank period). Compared to other multivariate anal-
ysis methods, the neural state-space method has specific advantages and is well suited to addressing 
the questions investigated herein. First, compared to multivariate decoding, the state-space method 
extracts multivariate neural activity patterns relevant to multiple behavioral metrics simultaneously, 
as opposed to investigating neural correlate of one behavioral metric at a time. Second, compared 
to automatic dimensionality reduction, such as PCA and similar techniques (Churchland et al., 2012; 
Cunningham and Yu, 2014; Baria et al., 2017), the state-space approach directly identifies the neural 
activity pattern (i.e., neural subspace) relevant to a particular behavioral metric, as opposed to being 
behavior agnostic.

Our finding of perceptual content encoding in the SCP band provides further evidence of the role 
of SCP in conscious perception, consistent with earlier studies (Li et al., 2014; Baria et al., 2017; 
Flounders et al., 2019). A general role of SCP in supporting conscious awareness (He and Raichle, 
2009) is also corroborated by recent findings comparing different states of consciousness (Bourdillon 
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et al., 2020; Toker et al., 2022). In the domain of bistable perception, most studies probing neural 
correlates of perceptual content have employed fMRI (e.g., Tong et al., 1998; Haynes and Rees, 2005; 
Wang et al., 2013), and most electrophysiological studies have focused on changes in ERPs (e.g., 
Britz et al., 2009; Pitts et al., 2009), oscillatory power (e.g., de Jong et al., 2016), or neuronal firing 
rates (Gelbard-Sagiv et al., 2018) around perceptual switches. Previous electrophysiological studies 
probing neural correlates of perceptual content have typically used specialized stimulus design, such 
as frequency tagging (Tononi et al., 1998; Srinivasan et al., 1999), binocular rivalry involving face 
and oriented grating (where face-elicited ERFs, the M170, correlates with perceiving faces) (Sandberg 
et al., 2013; Sandberg et al., 2014), or auditory bistable stimuli where neural information integra-
tion correlates with perceiving an integrated auditory stream (Canales-Johnson et al., 2020). Here, 
by using classic ambiguous figures where the two percepts are symmetrical in salience and level of 
cortical processing, and showing results consistent across different images, our findings provide a 
more generalizable electrophysiological correlate of perceptual content. Our results also comple-
ment a recent intracranial electrophysiology study using the same ambiguous figures which revealed 
changes in corticocortical information flow depending on the specific perceptual content experienced 
(Hardstone et al., 2021). Finally, the potential role of gamma frequency band in encoding perceptual 
content should be further investigated in future studies using intracranial recordings which are more 
sensitive to gamma-band activity than MEG (e.g., Panagiotaropoulos et al., 2012).

A relationship between alpha and beta amplitudes and the stability of percepts has been reported 
in several previous studies of bistable perception (Kloosterman et al., 2015; Piantoni et al., 2017; 
Zhu et  al., 2022). Although the detailed mechanisms involved remain unclear, two non-mutually 
exclusive mechanisms have been proposed: lateral inhibition and the resulting dynamical attractor 
at a local scale (Piantoni et al., 2017) and top-down feedback from higher-order regions (Kloost-
erman et al., 2015; Zhu et al., 2022). While both local inhibition and top-down processing roles have 
been ascribed to alpha and beta oscillations (Jensen and Mazaheri, 2010; Michalareas et al., 2016; 
Spitzer and Haegens, 2017), we believe that our finding of higher alpha/beta amplitude being asso-
ciated with stronger perceptual stability (Figure 4A) is more compatible with a top-down interpreta-
tion. While lateral inhibition between competing neuronal groups is a key ingredient of biophysical 
models of bistable perception (e.g., Shpiro et al., 2009), and enhancing cortical inhibition by admin-
istering lorazepam, a GABAA receptor agonist, enhances perceptual stability (van Loon et al., 2013), 
lorazepam also has the effect of reducing alpha power (Lozano-Soldevilla, 2018)—opposite to the 
present finding of a positive correlation between perceptual stability and alpha power. By contrast, 
recent intracranial electrophysiological evidence suggests that top-down feedback can carry percep-
tual templates congruent with long-term priors that act to stabilize a particular percept (Hardstone 
et al., 2021). Given the well-documented role of alpha and beta oscillations in carrying top-down 
feedback (van Kerkoerle et al., 2014; Bastos et al., 2015; Michalareas et al., 2016), a plausible 
mechanism for the present finding of higher alpha/beta amplitudes being associated with longer 
percept durations is then a top-down modulatory influence carried in the alpha and beta bands.

Similarly, we interpret our finding of alpha and beta amplitudes being associated with perceptual 
memory as reflecting a top-down modulatory influence. Consistent with this interpretation, a previous 
fMRI study showed that the content of perception and perceptual memory during intermittent presen-
tation of ambiguous images is especially decodable in higher-order frontoparietal regions, and that 
intermittent presentation elicits strong top-down influences as compared to continuous presentation 
(Wang et al., 2013). The locations of sensors involved in perceptual memory (Figure 4B) are more 
anterior than those involved in perceptual stability (Figure 4A), which may reflect the source and 
target of top-down modulation, respectively.

Our finding of alpha and beta amplitudes being related to perceptual memory is concordant with 
a recent EEG study (Zhu et al., 2022), but, superficially, the two studies appear to report opposite 
directions of this relationship: a negative correlation (manifested as negative β weights) in the present 
study versus a positive correlation in the earlier EEG study. However, a closer inspection suggests 
that the two studies are in fact consistent: Zhu et al. used short blank durations (~0.5–1.5  s), and 
alpha/beta amplitudes are higher in stable-blank trials than unstable-blank trials early (within 500 ms 
of blank-onset) during the blank period, but lower in stable-blank trials (after 800 ms) late in the 
blank periods (Figure 4B therein). The present study used long blank durations (6 s), and the lower 
alpha/beta amplitude in stable-blank trials is mostly evident at 500 ms following blank onset or later 

https://doi.org/10.7554/eLife.78108


 Research article﻿﻿﻿﻿﻿﻿ Neuroscience

Hardstone et al. eLife 2022;11:e78108. DOI: https://doi.org/10.7554/eLife.78108 � 12 of 20

(Figure 4B, right, note ‘projected average’ is amplitude multiplied by β weights, which are negative). 
The exact neurophysiological mechanisms contributing to these time courses remain to be inves-
tigated, but both studies converge to suggest that alpha and beta amplitudes influence not only 
perceptual stability when sensory input is in view but also perceptual memory when sensory input is 
temporarily removed from view. Importantly, the present results differ from previous studies showing 
beta power increases during working memory maintenance (Spitzer and Haegens, 2017), rein-
forcing the notion that perceptual memory differs from working memory: the former is unconscious 
and automatic (Pearson and Brascamp, 2008), while the latter is largely conscious and deliberate 
(Trübutschek et al., 2019). Furthermore, we found that neural activity (in the alpha and beta bands) 
underlying perceptual memory has significant overlap with neural activity encoding elapsed time (as 
evidenced by a significant positive correlation of β weight vectors for the ‘Blank’ and ‘Memory’ axes), 
which also fits better with an automatic process as opposed to an working memory account (Souza 
and Oberauer, 2015; Fulvio and Postle, 2020).

In sum, across multiple perceptual conditions (unambiguous vs. ambiguous sensory input; contin-
uous vs. intermittent presentation), we found that distinct components of dynamical neural activity 
contribute to the content vs. stability of perception. While perceptual content is encoded in the 
activity pattern of low-frequency neural activity in the SCP band, perceptual stability and perceptual 
memory are influenced by the fluctuations of alpha and beta oscillation amplitudes. These results 
provide clues to the neural mechanisms underlying stable visual experiences in the natural environ-
ment, wherein the ever-present noise and instability in the retinal images must be overcome to recon-
struct the cause of sensory input in order to guide adaptive behavior. Finally, these results also inform 
future computational models of bistable visual perception and efforts to understand pathological 
processes underlying perceptual disorders in mental illnesses, including abnormal bistable percep-
tual dynamics in autism and schizophrenia (Robertson et al., 2013; Kornmeier et al., 2017; Weiln-
hammer et al., 2020).

Materials and methods
Subjects
The experiment was approved by the Institutional Review Board of the National Institute of Neurolog-
ical Disorders and Stroke (under protocol #14 N-0002). All subjects were right handed and neurolog-
ically healthy with normal or corrected-to-normal vision. Nineteen subjects between 19 and 33 years 
of age (mean age 24.5; nine females) participated in the MEG experiment. We excluded one subject 
from analysis due to repeatedly falling asleep during the task. All subjects provided written informed 
consent.

Task design and behavioral analysis
The task was adapted from a previously run fMRI experiment (Wang et  al., 2013). In the study, 
two well-known ambiguous images (Necker cube and Rubin face–vase) were used to study bistable 
perception under continuous (Ambiguous condition) and intermittent presentation (Discontinuous 
condition) (Figure 1). As a control, we also included a condition where we manipulated the content, 
outlines, and shading of the ambiguous images to accentuate one of the two percepts (Unambiguous 
condition), with the intention that the subject would perceive that percept.

Stimuli were presented using E-Prime Software (Psychology Software Tools, Sharpsburg, PA) via 
a Panasonic PT-D3500U projector with an ET-DLE400 lens, with the screen 55 cm from the subject’s 
eyes. All face–vase images subtended 16.9 × 17.6 (height × width) degrees of visual angle, and all 
cube images subtended 14.3 × 14.5 degree.

Each subject completed 12 runs, consisting of 4 sets of 3 runs in the following order: Unambiguous, 
Ambiguous, and Discontinuous conditions.

Each Ambiguous run contained six trials, with each trial consisting of 2 s of written instruction, 2 s 
of fixation (while fixating on a crosshair in the center of the screen), 60 s of image presentation, and 
3–7 s of intertrial interval (Figure 1A). Each ambiguous image was presented three times in a pseudo-
random order. Subjects reported every spontaneous perceptual switch using their right hand via one 
of three buttons throughout the course of image presentation: one button for each of the possible 
percepts, and one for ‘Unsure’ which they were instructed to press if they experience neither or both 
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of the possible percepts. In order to investigate spontaneous perceptual switches, subjects were 
instructed to passively view the images and not to try to switch or hold onto a percept.

Each Unambiguous run contained 32 trials, with each block consisting of 2 s of written instruction, 
2 s of fixation, 5 s of image presentation, and 3–7 s of intertrial interval (Figure 1C). The four unam-
biguous images were presented eight times each in a pseudorandom order. Subjects were asked 
to indicate their percept via one of three buttons (one button for each possible percept, and one 
for unsure) at each image presentation. Valid trials consisted of subjects pressing the button for the 
intended percept once, and no other button presses (Figure 1D).

Each Discontinuous run contained six trials, with each trial consisting of 2 s of written instruction, 
2 s of fixation, nine repetitions of 2 s image presentation followed by a 6 s blank period (of which the 
last second contained the crosshair in the center of the screen) (Figure 1E). Subjects were asked to 
indicate their percept during each image presentation via a button press, and not to press buttons 
during the blank period. Perceptual switching during the 2 s image presentation was very rare and was 
excluded from analyses. The two ambiguous images were presented in alternating trials.

For all conditions, subjects were instructed to fixate upon a crosshair at the center of the screen at all 
times to avoid the potential influence of gaze on perception. Response mapping was altered between 
runs, by switching the buttons for the two percepts. For the first nine subjects the response mapping 
for the two percepts was switched after every run. For the final 10 subjects, we instead switched the 
response mapping after every set of 3 runs. Before entering the MEG, subjects performed practice 
runs until they were comfortable with the task and the buttons corresponding to each percept.

MEG recordings
While performing the task, we recorded neural activity from each subject using a 275-channel 
whole-head MEG system (CTF). Three dysfunctional sensors were removed from all analyses. We 
also recorded gaze position and pupil size using a SR Research Eyelink 1000+ system. Eye-tracking 
was used for online monitoring of fixation and wakefulness during the experiment. MEG data were 
recorded at a sampling rate of 600 Hz, with a low-pass anti-aliasing filter of 150 Hz and no high-pass 
filter (i.e., DC recording). Before and after each run, the head position of a subject was measured using 
fiducial coils, in order to detect excessive movement. During each task subjects responded using a 
fibreoptic response button box. All MEG data samples were realigned with respect to the presenta-
tion delay of the projector (measured with a photodiode).

MEG data preprocessing and feature extraction
All preprocessing and analysis of data were performed in MATLAB (Mathworks, Natick, MA) using 
custom-written code and the FieldTrip toolbox (Oostenveld et  al., 2011). MEG data were first 
demeaned and detrended. Data were then filtered at 0.05–150 Hz using a third-order Butterworth 
filter, and line noise as well as harmonics were removed using fourth-order Butterworth band-stop 
filters (58–62, 118–122, and 178–182 Hz). Independent component analysis (Fieldtrip runica method) 
was then applied, and components were manually inspected to remove those related to eye blinks, 
eye movements, or heart-beat-related artifacts.

Three different features of neural activity were then extracted. SCP activity was obtained using a 
third-order low-pass Butterworth filter at 5 Hz. Alpha-band amplitude was extracted by taking the 
absolute of the Hilbert transform (Matlab, abs(hilbert(data))) of the preprocessed MEG data that had 
been filtered at 8–13 Hz using a third-order Butterworth filter. Beta-band amplitude was extracted in 
the same way, but using data filtered in the 13–30 Hz range.

Decoding perceptual content
We attempted to decode perceptual content during the Ambiguous and Unambiguous conditions 
using the three extracted neural features (SCP, alpha amplitude, beta amplitude). For the Ambiguous 
condition, we first extracted periods between button presses where each button press was for a 
different percept (excluding ‘Unsure’ button presses), and the period was labeled according to the 
first button press (i.e., Face, Vase, Green, or Blue). As these periods were all of different durations, 
we then rescaled them to be the same length by selecting 100 equally spaced time points, giving 
us percentiles of the percept’s duration. For the Unambiguous condition, we selected valid trials for 
analysis, wherein the subject only pressed a button once for the intended percept. The time period 
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used for decoding was the 5 s that the image was on the screen, and MEG data were downsampled to 
10 Hz before applying the decoding pipeline. The label of the trial was the image that was presented 
(i.e., Face, Vase, Green, or Blue). For both task conditions, the classification was done separately 
for the Necker Cube (Green vs. Blue) and Rubin face–vase (Face vs. vase). All trials were normalized 
(z-scored) across sensors at each time point. Trials were then split into fourfolds with an equal number 
of trials of each label in each fold. Trials for a fold were selected by taking every fourth trial of that trial 
type (ordered by when the trial occurred during the recording).

The decoding pipeline consisted of taking one fold as the testing set, and training a linear SVM 
classifier (cost = 1) using the LIBSVM packages (Chang and Lin, 2011) at each time point to the trials 
from the other threefolds, which constituted the training set. Decoding accuracy of the classifier was 
then calculated on the testing set. The temporal cross-generalization of the classifier was also tested 
by assessing its classification accuracy at every other time point. This was done using each fold as 
the testing set, and the decoding accuracy (and temporal generalization) was averaged across the 
fourfolds.

Cluster-based permutation tests for multivariate pattern decoding
The group-level statistical significance of classifier accuracy at each time point was assessed by a 
one-tailed, one-sample Wilcoxon signed-rank test against chance level (50%). To correct for multiple 
comparisons, we used cluster-based permutation tests (Maris and Oostenveld, 2007). Temporal 
clusters were defined as contiguous time points with above-threshold classification accuracy (cluster-
defining threshold: p < 0.1). The test statistic W of the Wilcoxon signed-rank test was summed across 
time points in a cluster to yield a cluster’s summary statistic. Cluster summary statistics were compared 
to a null distribution, constructed by shuffling class labels 100 times, and extracting the largest cluster 
summary statistic for each permutation. Clusters in original data with summary statistics exceeding 
the 95th percentile of null distribution were considered significant (corresponding to p < 0.05, cluster-
corrected, one-tailed test). For classifier temporal generalization, the permutation-based approach 
for cluster-level statistical inference used the same procedure as above, where clusters were defined 
as contiguous time points in training and/or generalization dimensions with above threshold (p < 0.1) 
classification accuracy.

Neural state-space analysis
To work out the relative contributions of different behaviors to neural activity patterns, we devel-
oped a novel multivariate analysis method to extract the neural subspace relevant to each behavior, 
following the approach used in Mante et al., 2013. While perceptual content is clearly an important 
aspect of behavior, there are other aspects of behavior which account for the perceptual switching 
dynamics (Ambiguous condition) and perceptual memory (Discontinuous condition). For the Ambig-
uous condition, we first selected 100 equally spaced time points from each period that occurred 
between button presses for the two percepts (i.e., not for time points preceded or followed by an 
unsure button press). We then defined four behavioral metrics for each time point:

•	 Type, a binary variable indicating the current percept.
•	 Duration, a continuous variable which takes the same value throughout a percept and is normal-

ized within subject (i.e., 0 for the shortest percept reported and 1 for the longest percept).
•	 Switch, a continuous variable that was 0 at the time of a button press and 1 at the midway point 

between button presses, indicating the relative temporal distance to perceptual switches.
•	 Direction, a binary variable indicating whether the current percept is stabilizing (i.e., time point 

is in the first half of its duration) or destabilizing (i.e., in the second half of its duration).

For the Discontinuous condition, only time points during the blank period (6  s total, including 
the 1 s fixation period) were used, where the blank period was preceded and followed by an image 
presentation during which the subject pressed for one of the two percepts. Four behavioral metrics 
were defined.

•	 Pre, a binary variable indicating the percept reported before the blank period.
•	 Post, a binary variable indicating the percept reported after the blank period.
•	 Blank, a continuous variable increasing from 0 at the beginning of the blank period to 1 at the 

end of the blank period, indicating time elapsed during the blank period.

https://doi.org/10.7554/eLife.78108
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•	 Memory, a binary variable indicating whether the percept before the blank was the same as that 
after the blank, with 1 indicating the presence of a memory trace and 0 indicating the absence 
of a memory trace.

These time points were split into two datasets (first and second half of time points based on time 
through experiment), with the first half used as the training set, and the second half used as the test 
set. Using the training dataset, the MEG data (applied separately for the three neural features: SCP, 
alpha amplitude, and beta amplitude) for each sensor are first normalized over time using the mean 
and standard deviation from the training set. A multilinear regression of the following form was solved 
to find the β weights in the equation (using MATLAB function fitlm, with RobustOpts).

	﻿‍ MEGsensor1 = βa1Behaviora + βb1Behaviorb + βc1Behaviorc + βd1Behaviord + ε‍�

These β weights define the axes of the behavioral subspace for that neural feature. MEG data from 
the test set (which has been normalized at the individual sensor level using the mean and standard 
deviation from the training set, so that the projection method does not depend on any informa-
tion from the test set) can then be projected onto the behavioral axes (using the MATLAB function 
mldivide). This gives a prediction of the value for each behavioral metric based on neural activity at 
each time point of the test set.

Statistics for neural state-space analysis
To assess the consistency across subjects of the β weights defining each behavioral axis, and whether 
each neural feature carried predictive information about the behavior, a cluster-based permutation 
method (Maris and Oostenveld, 2007) was applied separately for each axis. This involved shuffling 
the behavioral information across all of the trials only for that axis. For axes where behavior was 
defined in the same way for each trial (Ambiguous: Switch and Direction Axes; Discontinuous: Blank 
Axis), each trial was instead ‘flipped’ with a 50% chance, where the flipped trial was equal to 1 — orig-
inal behavior. Once the behavioral data were shuffled, the state-space analysis was reapplied, and this 
was done for 100 permutations of the data.

To assess consistency of the β weights defining each behavioral axis, a two-sided Wilcoxon sign-rank 
test against zero was applied separately to each electrode. To correct for multiple comparisons across 
sensors, we used cluster-based permutation tests (Maris and Oostenveld, 2007). Spatially contig-
uous electrodes with a significant bias (p < 0.05) and the same sign of the test statistic W, formed a 
cluster (either positive or negative depending on the sign) where the cluster summary statistic was the 
sum of the electrodes’ test statistic W. This cluster summary statistic was compared to a null distri-
bution, formed from the largest (i.e., most positive or most negative) cluster summary statistic for 
each permutation. Clusters in original data with summary statistics exceeding the 95th percentile of 
null distribution were considered significant (corresponding to p < 0.05, cluster-corrected, one-tailed 
test). Positive and negative clusters were assessed separately by comparison to the respective null 
distribution.

To assess consistency between two state spaces (either between β weight maps for the two different 
images and the same axis, or between two different axes and the same image), cosine similarity was 
applied.

	﻿‍
cos θ = βA.βB

∥βA∥∥βB∥‍�

where ‍βA‍ and ‍βB‍ correspond to the two β weight maps. Cosine similarity produces a value between 
−1 and 1, where 1 indicates that the projection of the MEG data into the two behavioral state spaces 
would produce perfectly correlated behavioral estimates, and −1 indicates that they would be entirely 
anticorrelated. To assess significance of the cosine similarity, a null distribution was created by calcu-
lating cosine similarity between the two β maps for each permutation, and the p value was calculated 
as the fraction of this distribution with values larger than the cosine similarity of the original data.

To assess whether each neural feature carried predictive information about each behavioral axis, 
a different test was applied depending on the axis. In the following analyses, a one-sided statistical 
test is often used because if the neural subspace is successfully extracted, the predicted behavioral 
metric in the test dataset should follow specific relationships similar to the definition of these axes 
(Figure 3A).
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First, data from the test dataset were projected into the neural subspace defined for each axis 
using the training data. For those axes with binary behavior that had the same value across time for 
each trial (Ambiguous: Type; Discontinuous: Pre, Post), a paired t-test across subjects (one-sided) was 
applied at each time point between the trial-averaged predicted behavior for the two groups of trials 
(e.g., Green Cube and Blue Cube).

For the axis with continuous behavior that had the same value across time for each trial (Ambig-
uous: Duration), two analyses were carried out: (1) (Figure 4A) For each subject, predicted percept 
duration (using neural activity at each time point) was correlated with the actual percept duration 
across trials by a Spearman correlation. The rho values were then subjected to a Wilcoxon sign-rank 
test across subjects (one-sided), and corrected for multiple comparisons using cluster-based permu-
tation test.

A one-sided Wilcoxon sign-rank test was applied at each time point between the predicted and 
actual behavior. (2) (Figure 4—figure supplement 1B) A median split was performed on the test 
dataset for each subject according to percept duration. The projected data (i.e., predicted percept 
duration based on neural data) were then compared between the two groups of trials by a paired 
t-test across subjects (one-sided), and corrected for multiple comparisons using cluster-based permu-
tation test.

For those axes where the actual behavior changed across time within a trial in a continuous manner 
(Ambiguous: Switch; Discontinuous: Blank), the trial-averaged predicted behavior from each subject 
was compared to the actual behavior using a Spearman correlation. The Spearman rho values were 
then subjected to a group-level test using a Wilcoxon signed-rank test against zero (one-sided).

Lastly, for the axis where actual behavior changed across a trial in a binary manner (Ambiguous: 
Direction), the trial-averaged predicted behavior for each subject was compared between the first half 
of the trial and the second half of the trial using a two-sample t-test. The resulting t-values were then 
subjected to a Wilcoxon signed-rank test against zero (one-sided) at the group level.

To correct for multiple comparisons, we used cluster-based permutation tests (Maris and Oost-
enveld, 2007). Temporal clusters were defined as contiguous time points with above-threshold 
test statistic (cluster-defining threshold: p < 0.05). The test statistic (Wilcoxon signed rank (W) or 
t-test (t)) was summed across time points in a cluster to yield a cluster’s summary statistic. Cluster 
summary statistics were compared to a null distribution, formed by extracting the largest cluster 
summary statistic for each permutation. Clusters in original data with summary statistics exceeding 
the 95th percentile of null distribution were considered significant (corresponding to p < 0.05, cluster-
corrected, one-tailed test).
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