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Studies employing functional connectivity-type analyses have established that spontaneous fluctuations in func-
tional magnetic resonance imaging (fMRI) signals are organized within large-scale brain networks. Meanwhile,
fMRI signals have been shown to exhibit 1/f-type power spectra— a hallmark of scale-free dynamics.We studied
the interplay between functional connectivity and scale-free dynamics in fMRI signals, utilizing the fractal con-
nectivity framework — a multivariate extension of the univariate fractional Gaussian noise model, which relies
on a wavelet formulation for robust parameter estimation. We applied this framework to fMRI data acquired
from healthy young adults at rest and while performing a visual detection task. First, we found that scale-
invariance existed beyond univariate dynamics, being present also in bivariate cross-temporal dynamics. Second,
we observed that frequencies within the scale-free range do not contribute evenly to inter-regional connectivity,
with a systematically stronger contribution of the lowest frequencies, both at rest and during task. Third, in ad-
dition to a decrease of the Hurst exponent and inter-regional correlations, task performance modified cross-
temporal dynamics, inducing a larger contribution of the highest frequencieswithin the scale-free range to global
correlation. Lastly, we found that across individuals, a weaker task modulation of the frequency contribution to
inter-regional connectivity was associatedwith better task performancemanifesting as shorter and less variable
reaction times. These findings bring together two related fields that have hitherto been studied separately —

resting-state networks and scale-free dynamics, and show that scale-free dynamics of human brain activity
manifest in cross-regional interactions as well.

© 2014 Elsevier Inc. All rights reserved.
Introduction

In recent years, functional-connectivity analysis applied to resting-
state blood oxygen level-dependent (BOLD) fMRI has revealed a rich in-
trinsic functional architecture of brain activity, manifesting as large-
scale, coherent brain networks that recapitulate the spatial patterns of
task activations (Biswal et al., 1995; Xiong et al., 1999; Fox et al.,
2005; Cordes et al., 2001; Raichle et al., 2001; Fox and Raichle, 2007;
Damoiseaux et al., 2006; Smith et al., 2009). The functional significance
of fMRI resting-state networks (RSNs) has been demonstrated in vari-
ous neurological and psychiatric diseases by showing that the degree
of disruption of resting-state networks (RSNs) correlated with the se-
verity of the disorder (He et al., 2007a; Zhang and Raichle, 2010;
Zhang et al., 2013). Moreover, repetitive training over period of days
sculpts spontaneous activity of the resting human brain, suggesting dy-
namic reconfiguration of RSNs (Lewis et al., 2009).

Most studies assessing functional connectivity so far have used
either a seed-based region-of-interest (ROI) approach, in which the
time series associated with a chosen ROI is used as a regressor to
identify regions of similar temporal behavior across the brain
(Biswal et al., 1995; Raichle et al., 2001; Greicius et al., 2003), or an
independent component analysis (ICA) — an exploratory approach
for identifying spatial regions with temporally coordinated activity
(Beckmann et al., 2005; Calhoun et al., 2001; Kiviniemi et al., 2009).
Each approach relies on either anatomically or statistically driven a
priori assumptions (see (Cole et al., 2010) for a general review of the
pros and cons of both approaches). The seed-basedmethod relies large-
ly on the computation of linear Pearson correlation coefficients between
the temporal fluctuations of BOLD signal in different brain regions. The
ICA approach identifies spatial components that are maximally inde-
pendent, each component grouping voxels with similar temporal dy-
namics (Beckmann et al., 2005; Cole et al., 2010).

In nature, Pearson's correlation is linear, static and global. Wheth-
er linear coupling is sufficient in describing interactions between
brain regions or networks has been studied with care, using the func-
tional integration index and mutual information (Hlinka et al., 2011;
Marrelec et al., 2008). Definitive answers are still lacking, which de-
pends onwhether fMRI data are well modeled as Gaussian processes,
andwhether their dependence structure can be described by the sole
correlation coefficient. It has been observed that depending on the
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spatial scale at which the correlation measure is assessed, departure
from Gaussianity may be relatively minor (within-network) (Hlinka
et al., 2011) or significant (between-network) (Marrelec et al., 2008).

Pearson's correlation can also be considered a static measure of de-
pendency since it does not provide practitioners with any information
regarding the contributions of the different frequencies to correlation.
To bridge that gap, the coherence function can be used to measure
the relative contributions of the different frequencies to correlation
(Salvador et al., 2005; Chang and Glover, 2010; Allen et al., 2014).

The global nature of Pearson's correlation prevents assessment of
dependencies that vary over time. To overcome that limitation,
local correlation coefficients can be computed via sliding windows
(Chang and Glover, 2010; Allen et al., 2014; Hutchison et al., 2013)
to access dynamic functional connectivity in humans or animals
(Hutchison et al., 2013; Majeed et al., 2011). It is however natural
and efficient to combine local (time-varying) and frequency-dependent
correlation measure into time-frequency or wavelet-based measures
of correlation such as the wavelet transform coherence (Chang and
Glover, 2010). Indeed, temporal reconfigurations of fMRI RSNs have
been recently observed over typical scan durations (several minutes)
using time-resolved acquisitions and a cascade of spatial and temporal
ICA (Smith et al., 2012), or sliding-window ICA or principal component
analysis (PCA) (Kiviniemi et al., 2011; Leonardi et al., 2013). More re-
cently, it has been demonstrated that the spatial signature of RSNs can
be reconstructed froma few spontaneous coactivationpatterns occurring
at critical time points using a point processmethodology (Tagliazucchi et
al., 2012) or a clustering algorithm (Liu and Duyn, 2013).

In a separate vein, the temporal dynamics of brain activity has also
been extensively studied. In both BOLD fMRI and electrophysiological
recordings from the brain, a major component of brain activity is ar-
rhythmic and demonstrates scale-invariance in temporal dynamics
(i.e., “scale-free dynamics”), suggesting that no single time scale plays
a predominant role (Zarahn et al., 1997; Linkenkaer-Hansen et al.,
2001; Thurner et al., 2003; Shimizu et al., 2004; Stam and de Bruin,
2004; He et al., 2008; Ciuciu et al., 2008; Wink et al., 2008; Miller et
al., 2009; He et al., 2010; Expert et al., 2011; Van de Ville et al., 2010;
He, 2011; Ciuciu et al., 2012; Dehghani et al., 2012). Scale-free dynamics
is associated with long-range dependence (also called “long memory”)
and self-similarity in time (Beran, 1994) and a power-law distribution
of the power spectrum (Γ( f)∝1 / f α with α N 0) in the frequency do-
main. Scale-free dynamics in fMRI signals have been shown to localize
to graymatter (30–31), vary across behavioral conditions and brain net-
works (He, 2011; Ciuciu et al., 2012), and alter with age (Suckling et al.,
2008), arousal state (Tagliazucchi et al., 2013), and disease processes
(Maxim et al., 2005). Moreover, long memory in fMRI signals, as quan-
tified by Hurst exponent, decreases during task in both activated and
deactivated brain regions (He, 2011). In parallel, it has been shown
that arrhythmic low-frequency fluctuations of brain electrical field po-
tentials (b4 Hz) are organized in the same intrinsic large-scale brain
networks revealed by resting-state fMRI (He et al., 2008) and also dem-
onstrate decreased long memory during task state (He et al., 2010).
Thus, analyzing scale-invariance in temporal dynamics may provide
novel insights into brain mechanisms underlying cognition and behav-
ior (Linkenkaer-Hansen et al., 2001; Shimizu et al., 2004; Stam and de
Bruin, 2004; He et al., 2008; He et al., 2010; He, 2011; Ciuciu et al.,
2012; Suckling et al., 2008; Maxim et al., 2005).

The present study aims at analyzing functional connectivity within
and amongst RSNs beyond the use of the Pearson correlation coefficient
ρXYby investigating scale-free cross-temporal dynamics. To this end, the
fractal connectivity framework is used, which extends the classical uni-
variatemodels of fractional Brownianmotion (fBm)/fractional Gaussian
noise (fGn) (Mendelbrot and VanNess, 1968) into amultivariate setting
and thereby allowing the investigation of scaling behaviors of cross-
spectra (Achard et al., 2006). More precisely, while the Hurst exponent
H is classically used to quantify univariate scale-free temporal dynamics,
scale-free cross-temporal dynamics between two regions X and Y are
quantified by a scaling exponent αXY, related to the power-law decay
of the cross spectrum. Exponent γXY = αXY − (HX + HY) + 1 is further
defined to evaluate the extent to which cross-temporal dynamics con-
tribute to functional connectivity: When γXY = 0, the cross spectrum
contains no extra information beyond that carried by the auto spectra;
in this case, functional connectivity between regions X and Y is said to
follow fractal connectivity. Conversely, γXY ≠ 0 indicates that γXY con-
veys dynamical information not already contained in the static ρXY: It
acts as a scale-free parameter to gauge the balance between different
frequencies in their contributions to functional connectivity. Specifical-
ly, the recent formulation of fractal connectivity into a wavelet frame-
work, referred to as wavelet fractal connectivity (Wendt et al., 2009) is
adopted here, as it allows the analysis of scale-free cross-temporal dy-
namics in a theoretically well-grounded and practically efficient man-
ner. Hence, in the present work, functional connectivity in fMRI data is
analyzed beyond the static correlation ρXY, under the additional light
of the frequency balance parameter γXY.

Methods

Functional magnetic resonance imaging (fMRI) data were acquired
from seventeen normal healthy young adults (9 females, age:
18–27 years) at rest and while performing a visual detection task. All
subjects provided written informed consent. This dataset has been pre-
viously published in separate studies (He, 2011, 2013; Fox et al., 2007).

fMRI data acquisition

Blood-oxygen-level dependent (BOLD) fMRI data (4 × 4 × 4 mm3

voxels, TE: 25 ms, TR: 2.16 s) were acquired in 17 normal right-
handed young adults (9 females, age: 18–27 years) using a 3T Siemens
Allegra MR scanner. All subjects gave informed consent in accordance
with guidelines set by the Human Studies Committee of Washington
University in St. Louis. Each subject completed 8 fMRI runs, each of
194 frames (~7 min) in duration. They consisted of two alternating
run types. The first run type was a resting-state study in which a
white crosshair was presented in the center of a black screen. Subjects
were instructed to look at the crosshair, to remain still, and to not fall
asleep. The second run type was a task study in which the identical
crosshair was presented, but now it occasionally changed from white
to dark gray for a period of 250 ms, at times unpredictable to the sub-
jects. The subjects were instructed to press a button with their right
index finger as quickly as possible when they saw the crosshair dim.
Each of these button-press runs contained 20 crosshair dims time-
locked to the scanner TR, with an inter-trial interval of 17.3–30.2 s. Sub-
jects practiced this button-press task once in the scanner, prior to the
onset of the functional scans. Anatomical MRI included a high-
resolution (1 × 1 × 1.25 mm3) sagittal, T1-weighted MP-RAGE (TR:
2.1 s, TE: 3.93 ms, flip angle = 7°) and a T2-weighted fast spin-echo
scan. This dataset has been previously published in separate studies
(He, 2011, 2013; Fox et al., 2007). All analyses were carried out using
custom-written codes in C++ and Matlab.

fMRI data preprocessing

fMRI preprocessing steps included, i.) compensation of systematic,
slice-dependent time shifts, ii.) removal of systematic odd–even slice in-
tensity difference due to interleaved acquisition (slice-timing correc-
tion); iii.) rigid body correction for inter-frame head motion within
and across runs, and iv.) intensity scaling to yield a whole-brain mode
value of 1000 (with a single scaling factor for all voxels). Atlas registra-
tion was achieved by computing affine transforms connecting the fMRI
runfirst frame (averagedover all runs after cross-run realignment)with
the T2- and T1-weighted structural images (Ojemann et al., 1997). Our
atlas representative template included MP-RAGE data from 12 normal
individuals and was made to conform to the 1988 Talairach atlas
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(Talairach and Tournoux, 1988). Datawere resampled to 3 × 3 × 3mm3

voxels after atlas registration. The first four frames of each fMRI run
were discarded in all further analyses. The fMRI time courses from
each runweremade zero-mean and the linear trendwas removed. Last-
ly, the effect of head motion and its temporal derivative were removed
by a linear regression.

It is known that sudden headmovements (like “spikes”) may have a
strong influence in the estimated scaling exponents. To cope with this
issue, a recent approach has been proposed in Siegel et al. (2013). It
Fig. 1. Networks definition and correlation structure. Top (A): ROIs mapped onto the cortical
regional correlation matrix at rest (p b 0.05, Bonferroni corrected). Regions are grouped by
Group-averaged inter-regional correlation matrix during the visual detection task (p b 0.05, B
and task (thresholded at p b 0.01, uncorrected, two-sample t-test for rest vs. task). The ROIs ar
the diagonal triangles surrounded by white dashed lines.
consists of erasing segments of time series which are corrupted by
very large head movements. This methodology turned out to be robust
for Hurst exponent analysis at least using detrendedfluctuation analysis
(DFA) (Chen et al. 2002). In this study, given the short length of time se-
ries, we first investigated the presence of large headmovements. As de-
tailed in Appendix A, we found that there were very few movement
spikes, such that the removal of temporal segments containing them
was unnecessary. Moreover, as detailed later, we rely on a wavelet
framework for scaling exponent estimation, which further brings extra
surface, with each color denoting a different network. Middle (B): Group-averaged inter-
network to ease visualization. Details of the ROIs are provided in Table 1. Middle (C):
onferroni corrected). Bottom (D): Difference of the correlation coefficients between rest
e grouped by networks whose names are given in Table 1; these networks correspond to
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robustness against non-stationarities, compared to DFA cf. e.g., Torres
and Abry, (2003).

Definition of regions of interest (ROIs)

31 ROIs were obtained from previous task-related functional neuro-
imaging studies or generated using coordinates from published fMRI
studies, which included 10 pairs of homologous brain regions. These
ROIs were the same as used in our previous study (He, 2011). Their lo-
cations in the brain are shown in Fig. 1A (mapping to brain surface was
done in CARET1). The regions were grouped into five cortical networks
based on their known anatomical/functional properties (including
attention, default-mode, motor, saliency and visual networks) and
a separate group outside the neocortex including the hippocampus,
thalamus and cerebellum.

The anatomical locations, Talairach coordinates, references and
associated networks of these ROIs are listed in Table 1. Specifically,
the attention, motor, visual, thalamus and cerebellum regions were ob-
tained from functional studies conducted in (He et al., 2007b). The de-
fault network regions were obtained from task-deactivation patterns
from a meta-analysis of nine PET studies, which originally unveiled
the default network (Shulman et al., 1997). To generate these ROIs,
following methods described in (He et al., 2007b), the activation or de-
activation Z-score maps were subjected to an automatic peak search,
peaks closer than 10 mmwere consolidated by averaging their coordi-
nates, and ROIs were defined around peaks by thresholding the map to
yield regions of approximately 905 m3, similar size as the coordinates-
derived ROIs described below.

The dorsolateral prefrontal cortex (DLPFC), part of the frontoparietal
attention network, and the saliency (also called “core task-control”)
network regions were obtained from published coordinates in three
studies (Dosenbach et al., 2006; Seeley et al., 2007; Vincent et al.,
2008). The coordinates for Broca's area and the hippocampal formation
(HF)were obtained from Embick and Poeppel, (2006) and Vincent et al.
(2006), respectively. In cases where coordinates from multiple studies
were obtained for one ROI, such as the R DLPFC and R TPJ (Table 1),
the center-of-mass of these coordinates was used. A 6-mm-radius
sphere ROI centered at these coordinates was created for each region.
All regions used in the present study have been investigated in seed-
based functional connectivity analyses applied to resting-state fMRI
data by the author and, for ROIs in the attention and saliency networks
as well as the HF, also in previous published studies (He et al., 2007b;
Seeley et al., 2007; Vincent et al., 2006, 2008; Dosenbach et al., 2007)
and have yielded networks consistent with those reported in the litera-
ture (Biswal et al., 1995; Fox et al., 2005; Damoiseaux et al., 2006; Fox et
al., 2006).

Scale-free temporal dynamics modeling

Scale-free temporal dynamics is now a commonly observed proper-
ty in brain activity (He, 2011). To account for scale-free temporal dy-
namics in brain dynamics, these references propose quasi-exclusively,
either implicitly or explicitly, to use fractional Gaussian noise (fGn),
the celebrated model put forward by Mandelbrot (Mendelbrot and
Van Ness, 1968) and massively used in many other scientific fields
(see (Wendt and Abry, 2007) for a review). In essence, fGn assumes
that data have Gaussian marginal distributions and a power-law type
spectral behavior, across a large range of frequencies:

ΓX fð Þ≈Cj f j−α
; f m⩽j f j⩽ f M ; f M= f m≫1; with0bαb1 ð1Þ

where α is related to the Hurst parameter H as α=2H− 1. This model
is relevant when analyzing brain activity measured from univariate
1 http://brainvis.wustl.edu/wiki/index.php/Caret:About.
time series, each associated with a given region of interest. However,
to assess functional connectivity, it is needed that a collection of time se-
ries each associatedwith a different region of interest, are studied joint-
ly (or simultaneously), to measure for instance how they correlate one
to another. It is thus natural to make use of a model inspired from the
multivariate extension of fGn (mfGn), proposed e.g., in (Didier and
Pipiras, 2011) and (Amblard and Coeurjolly, 2011). In essence, this
model assumes joint Gaussianity for the time series and power-law be-
haviors both for the auto- and cross-spectra, across a large range of
frequencies.

For the sake of simplicity, the model is stated here in the bivariate
case only, with a straightforward multivariate extension. Let X and Y
denote two time series associated with two brain regions. Their auto-
and cross-spectra are defined as, for fm ⩽ | f | ⩽ fM,fM/fm ≫ 1:

ΓX fð Þ ¼ ωX j f j−αX ; ΓY fð Þ ¼ ωY j f j−αY ; ΓXY fð Þ ¼ ωXY j f j−αXY ð2Þ

with parameters αX = 2HX and αY = 2HY confined to the range [0, 1].
Two important notes are now in order. First, mfGn theoretically further
imposes that αXY = (αX + αY) / 2 = HX + HY − 1. In the present work,
we allow αXY to depart from (HX + HY) this is why the model used here
is not strictlymfGn but rather inspired from. Second, the theoretical def-
initions of both fGn and mfGn actually imply that their spectra exhibit
power-law behavior in the limit of low frequencies: | f |→ 0. Practically,
however, power law behaviors are often assumed to hold across a large
but finite range of frequencies: fm ⩽ | f | ⩽ fM (with possibly fm N 0). We
will stick to that standard practice, while, with a slight abuse of lan-
guage, continuing to refer to these processes as fGn and mfGn. While
in the univariate case, this has little impact on the actual use of fGn as
a model for real data, this is of much larger importance in the multivar-
iate setting as this allows theoretically both positive andnegative depar-
tures of γXY = αXY − (HX + HY − 1) from 0, thus providing us with a
significant gain in versatility for analyzing spontaneous brain activity.

Coherence function

In the classical assessment of linear dependencies, the correlation
coefficient ρXY is used. It consists of a static quantity that conveys no in-
formation related to the way the different frequencies contribute to the
global correlation of X and Y. To overcome that limitation, the coherence
function can naturally be used. It consists of a (sort of) frequency-
dependent correlation coefficient (Marple, 1987):

CXY fð Þ ¼ ΓXY fð Þj jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΓX fð ÞΓY fð Þ

p : ð3Þ

By definition, it takes values in −1 ⩽ CXY(f) ⩽ 1 and ωXY=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
ωXωY

p
is

proportional to ρXY. When |CXY( f)|= |ρXY|,∀f, all frequencies are equally
or equivalently contributing to global correlation. Conversely, frequen-
cies such that |CXY( f )| N |ρXY| contributes more to global correlation
compared to frequencies where |CXY( f)| b |ρXY|.

Fractal connectivity

When X and Y follow the bivariate correlated scale-free model
defined in Eq. (2), the coherence function becomes, for fm ⩽ | f | ⩽ fM:

CXY fð Þ ¼ ωXYffiffiffiffiffiffiffiffiffiffiffiffiffi
ωXωY

p fj j−γXY ; where
γXY ¼ αXY− HX þ HYð Þ þ 1;
ωXYffiffiffiffiffiffiffiffiffiffiffiffiffi
ωXωY

p ∝ ρXY :

8<
:

ð4Þ

Fractal connectivity is theoretically defined as the case where CXY(f)
reduces to a (non-zero) constant over the range fm ⩽ | f | ⩽ fM, i.e.,

ρXY≠0 and γXY ≡ 0: ð5Þ

http://brainvis.wustl.edu/wiki/index.php/Caret:About


Table 1
Anatomical information and references for each ROI. Note that the ROI appearance order below defines the order of ROI entries in the following functional connectivity matrices such as
Fig. 1B.

Network ROI Anatomical location Talairach coordinates

Attention (AN) vIPS (He et al., 2007b) (L and R) ventral intraparietal sulcus −24, −69, 30
30, −80, 16

pIPS (He et al., 2007b) (L and R) posterior intraparietal sulcus −25, −63, 47
23, −65, 48

R TPJ R temporoparietal junction 49, −50, 28
MT (He et al., 2007b) (L and R) middle temporal region −43, −70, −3

42, −68, −6
FEF (He et al., 2007b) (L and R) frontal eye field −26, −9, 48

32, −9, 48
R DLPFC (Dosenbach et al., 2006; Seeley et al., 2007;
Vincent et al., 2008)

R dorsolateral prefrontal cortex 43, 22, 34

Default mode (DMN) AG (Shulman et al., 1997) (L and R) angular gyrus −51, −54, 30
45, −66, 27

SFG (Shulman et al., 1997) (L and R) superior frontal cortex −15, 33, 48
18, 27, 48

PCC (Shulman et al., 1997) Posterior cingulate cortex −6,−45, 33
MPF (Shulman et al., 1997) Medial prefrontal cortex −6, 51, −9
FP (Shulman et al., 1997) Frontopolar cortex −3, 45, 36

Motor (MN) L SII (He et al., 2007b) L second somatosensory area −57, −27, 21
L motor (He et al., 2007b) L primary motor cortex −39, −27, 48
Broca (Embick and Poeppel, 2006) Broca's area −42, 13, 14

Non- Neocortical (NC) ThalamusciteHe07b (L and R) thalamus −15, −21, 6
9,−18, 9

R Cerebellum (He et al., 2007b) R cerebellum 21, −54, −21
−21, −25, −14

HF (Vincent et al., 2006) (L and R) hippocampal formation 23, −23, −14
Saliency (SN) R FI (Seeley et al., 2007) R frontoinsular cortex 36, 21, −6

dACC (Dosenbach et al., 2006) Dorsal anterior cingulate cortex −1, 10, 46
Visual (VN) vRetino (He et al., 2007b) (L and R) ventral retinal region −15, −75, −9

15, −75, −9
dRetino (He et al., 2007b) (L and R) dorsal retinal region −6,−75, 9

9,−75, 12
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The intuition underlying fractal connectivity is that, for scale-free
data, all frequencies are contributing to the correlation (and hence to
functional connectivity) in an equivalent manner, or in a mfGn-type
compatible manner. In that case, the coherence function does not
bring any extra information compared to the sole static correlation coef-
ficient. Conversely, assuming ρXY ≠ 0, γXY N 0 (resp., γXY b 0) indicates
that low frequencies contribute more (resp., less) to the correlation of
X and Y than do high frequencies. Therefore estimating γXY and hence
the coherence function brings complementary information related to
the way temporal dynamics contribute to functional connectivity,
compared to the sole static correlation coefficient ρXY.

Note that, in that context, low and high frequencies are defined in a
relative manner: First, the range of frequencies, fm ⩽ | f | ⩽ fM, where
scale-free properties are observed is estimated. Second, low and high
refer respectively to the lower and upper sub-ranges of that scale-free
range of frequencies.

Two interesting limit behaviors are worth being described:

1. When |ρXY| → 1 then necessarily γXY → 0 because 0 ⩽ CXY(f) ⩽ 1,∀f ;

2. When |ρXY|→ 0 then γXY is ill-defined as the cross-spectrum is iden-
tically zeros, and γXY is thus observed to be estimated with large var-
iance (Veitch and Abry, 2001).

The wavelet estimation framework

It is now well-documented that the analysis of real-world data
with scale-free properties can be conducted in a theoretically well
grounded and practically robust and efficient manner using wavelet
coefficients, cf. e.g., (Veitch and Abry, 2001; Abry et al., 1995; Abry
and Veitch, 1998; Abry et al., 2002; Torres and Abry, 2003) in general
contexts and (Ciuciu et al., 2008, 2012; Bullmore et al., 2001; Fadili
and Bullmore, 2002) for brain activity analysis. Therefore, the fractal
connectivity model proposed here is recast into a wavelet framework.
This is detailed in Appendix B, which also discusses scaling parameter
estimation.

Correction for multiple comparisons

Unless otherwise mentioned, all reported p-values for the statis-
tical tests of correlation, self-similarity or fractal connectivity model
were Bonferroni corrected for multiple comparisons. To this end, we
divided the type-I error rate α = 0.05 by the number of simultaneous
comparisons due to the 21×20 / 2=210distinct region pairs. To control
the family-wise error rate at level α (equivalent to 1.3 in a− log10pval
scale as shown in Figs. 6A–B for instance), we computed the
corrected p-values by applying the following rule to uncorrected
p-values pval-corr = min(1210 × pval-uncorr).

Results

Correlation-based functional connectivity analysis

The fMRI dataset comprised of seventeen right-handed subjectswho
were scanned at rest and during a visual detection task (He, 2011, 2013;
Fox et al., 2007). fMRI data was preprocessed before extracting signals
from 31 ROIs obtained from previous task-related functional neuroim-
aging studies or generated using coordinates from published fMRI stud-
ies,which coveredfive brain networks [attention, default-mode (DMN),
motor, saliency and visual] aswell as several non-neocortical ROIs (thal-
amus, cerebellumand hippocampus) (see SI). Projection of regions onto
the cortical surface is shown in Fig. 1A. In the following analyses, 10
pairs of homologous regions were each averaged together. This step
was performed because we observed in preliminary analyses (see also
(He, 2011)) that the time series of these homologous regions are highly
correlated with each other and that their statistical properties are very
similar. Thus, we averaged across homologous regions in the same
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RSN in order to enhance statistical independence between investigated
brain regions.

Correlation coefficients ρXY were estimated from the rest and
task dataset separately for all pairs of regions, and were Fisher
z-transformed (ZXY) for statistical testing. Group-level means of corre-

lation coefficients were computed at rest ρR
XY

� �
and during task ρT

XY

� �
and mapped onto the significant one-sample t-tests Z

R
XY ¼ 0 and Z

T
XY ¼

0, respectively. Comparing Fig. 1B vs. Fig. 1C, it can be seen that correla-
tion remains high during task between regions belonging to a samenet-
work, whereas lower correlations are observed for between-network
region pairs — specifically, between DMN and other networks, a result
likely attributable to their respective task-deactivation and activation
(Fox et al., 2005). Fig. 1D shows region pairs with a significant change

in correlation between rest and task (paired t-test across subjects; H0 :

Z
R
XY−Z

T
XY ¼ 0). Significant (p b 0.01) differences between rest and task

were observed mainly for pairs of regions consisting of one region
located in theDMNand the other in the decoupled networks (attention,
visual, motor, saliency and the thalamus). Moreover, in all these region

pairs, correlation was higher under rest than task ρR
XY−ρT

XY N0
� �

.

Scale-free univariate analysis

We first applied the wavelet spectrum estimation framework to in-
vestigate univariate temporal dynamics of fMRI signals. As an example,
Fig. 2A–B and Fig. 3A–B show the superimposition of the power spec-
trum estimated by the standard Welch-periodogram and by wavelet
method (log2SX(2j) vs. log22j) for two regions [posterior intra-parietal
sulcus (pIPS) and middle temporal area (MT)] located in the dorsal at-
tention network (DAN) at rest (Figs. 2A–B) and during task (Figs. 3A–
Fig. 2. Univariate (A–B) andmultivariate (C–D) scale-free properties of fMRI signals at rest— ex
byWelch-periodogram(black) andwaveletmethod (red) for pIPS andMT. C: Superimposition o
method (red) in log–log coordinates. D: Superimposition of the coherence function between
estimated from linear regression based on the wavelet estimate (dashed red lines) in the scali
B), respectively. The match between the classical power spectrum and
wavelet spectrum confirms that wavelet coefficients can serve as an
efficient estimator for the spectrum. Both the classical and wavelet
spectra exhibited power-law scaling behavior over the range of 0.01 b

f b 0.1 Hz (corresponding to 3.3 b j b 6.6 with f=2−j). Indeed, applying
the goodness-of-fit assessment procedure described in Appendix C
shows that, out of the 357 analyzed time series (17 subjects × 21
regions), rejection of the null hypothesis that the wavelet auto-
spectrum is well described by a power law in that range of scales occurs
for only 16% and 14% of cases, at rest and during task respectively. This
confirms an earlier finding in He, (2011, p. 13788). Also, similar results
were obtained across ROIs and subjects, consistent with earlier reports
(He, 2011; Ciuciu et al., 2012). Henceforth, this range of frequencies is
referred to as the scaling range.

Hurst exponents were then estimated from the wavelet spectrum for
each region and individual, separately for the rest (HR) and task (HT)

dataset. Then, group-level means H
R
and H

T
were computed in each

ROI to assess the overall effect. When averaged across ROIs within a net-

work (Fig. 4), the DMN exhibited the strongest longmemory H
R
;H

T
� �

¼
0:91;0:86ð Þ, followed by the saliency H

R
;H

T
� �

¼ 0:9;0:83ð Þ, attention
H

R
;H

T
� �

¼ 0:9;0:83ð Þ and visual H
R
;H

T
� �

¼ 0:86;0:77ð Þ networks.

The non-neocortical regions H
R
;H

T
� �

¼ 0:78;0:73ð Þ and the motor

network H
R
;H

T
� �

¼ 0:77;0:72ð Þexhibited theweakest Hurst exponents.

These results are consistent with those previously obtained from the
same data using detrended fluctuation analysis (DFA) (He, 2011). Fur-
thermore, the same network-level ordering was maintained during task
while Hurst exponents in all ROIs systematically decreased from rest to
task (comparing Figs. 4A and B).
ample from a single subject. A–B: Superimposition of the auto-power spectrum estimated
f the cross-power spectrumbetween pIPS andMT estimated byWelch (black) andwavelet
pIPS and MT estimated by Welch (black) and wavelet (red) method. All exponents are
ng range defined by vertical dashed black lines (−6.6 b log2f b −3.3).
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Fig. 3.Univariate (A–B) andmultivariate (C–D) scale-free properties of fMRI signals during task (same subject as in Figs. 2A–B): Superimposition of the auto-power spectrum estimated by
Welch-periodogram (black) and wavelet method (red) for pIPS andMT. C: Superimposition of the cross-power spectrum between pIPS andMT estimated byWelch (black) and wavelet
method (red) in log–log coordinates. D: Superimposition of the coherence function between pIPS and MT estimated by Welch (black) and wavelet (red) method. All exponents are
estimated from linear regression based on the wavelet estimate (dashed red lines) in the scaling range defined by vertical dashed black lines (−6.6 b log2f b −3.3).

Fig. 4.Hurst exponents from scale-free univariate analysis. Group-averaged region-wise (bottom row) and network-average (top row)wavelet-based estimates of Hurst exponent at rest
(A) and during task (B). The color scale is the same for A and B, to illustrate the decrease of Hurst exponents from rest to task.
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We further estimated Hurst exponents for each ROI and each sub-
ject, at rest and during task, using six different estimators: three based
on spectral estimation (Direct FFT, Welch-periodogram and Whittle),
two relying on time domain representation (DFA and increments),
and one constructed on wavelet coefficients. Because it relies on a
Fig. 5.Group-level network-averageHurst exponent at rest (black) and during task (red) using
normalized by the number of samples) and subsequent linear regression on the log–log power
followed by linear regression on the log–log power spectrum plot. C:Whittle estimator, which c
noisemodel. D:Detrendedfluctuation analysis (DFA). E: Time-domain increment-basedHurst e
from a linear regression in the log–log plot where the log along the x-axis involves scales i
M, motor; N, non-neocortical; S, saliency; V, visual. The shaded areas outline the signific
indicated by * (p-val b 0.05, Bonferroni corrected).
maximum likelihood principle, Whittle estimator theoretically yields
the best estimates for Gaussian data, whereas the wavelet-based
estimator has been observed to show significant robustness against
additive non-stationary smooth and non-smooth trends. Fig. 5 shows
that while the six group-averaged estimates take slightly different
six different estimationmethods. A: Standard periodogram (squared fast Fourier transform
spectrum plot. B: Welch-based (i.e., averaged across overlapping windows) periodogram
onsisted of a maximum likelihood estimator of power spectrum under fractional Gaussian
xponent estimate. F:Wavelet spectrumestimate,where theHurst exponentwas estimated
nstead of frequencies. X-axis labels indicate networks: A, attention; D, default-mode;
ant differences of Hurst exponents between rest and task. Significant differences are
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values, they are observed to systematically belong to the long memory
range 0:5bHb1. Moreover, Hurst exponents during task are systemati-
cally smaller compared with those at rest, regardless the estimation
method:H

T
bH

R
. Using paired t-tests, we investigated the statistical sig-

nificance of this effect and showed that the reduction of self-similarity
from rest to task was found significant in the visual network by 3
estimation methods (DFA, increments and wavelets, all results were
Bonferroni-corrected for multiple comparisons). The wavelet method
additionally uncovered a significant change in the saliency network.
These observations confirm, in a robust manner, earlier reports of long
memory at rest and of a decrease in long memory during task (He,
2011; Ciuciu et al., 2012). A decrease in the Hurst exponent during
task implies an increased contribution of high frequencies to the tempo-
ral dynamics of fMRI signals.

Scale-free multivariate analysis

To assess cross-regional temporal dynamics, we applied wavelet-
based multivariate estimation to pairs of regions. For illustration, the
Welch-periodogram estimation of the cross-spectrum between MT and
pIPS at rest and during task is illustrated in Figs. 2C and 3C, respectively,
and superimposed with the wavelet estimation of the cross-spectrum
(log2SX(2j) vs. log22j). The cross-spectra exhibited power-law scaling be-
havior, within a range of frequencies that matched the scaling range of
univariate power spectra. Similar observations were obtained for almost
all other region pairs as illustrated in Figs. 6A–B at rest and during task.
Indeed, applying the goodness-of-fit assessment procedure described
in Appendix C shows that, out of the 3570 = 17 × 21 × 20 / 2 analyzed
pairs of regions, the hypothesis that the wavelet cross-spectrum is well
described by a power law was rejected only for 14% and 10% of cases,
at rest and during task respectively.

These observations reveal that scale-free properties are characteris-
tics not only of the univariate fMRI temporal dynamics but also of the
multivariate cross-temporal dynamics, within the same scaling range:
0.01 b f b 0.1 Hz. Scale-invariance in univariate temporal dynamics im-
plies that no frequency (in the scaling range) plays a dominant role in
the temporal dynamics. Scale-invariance in the multivariate cross-
temporal dynamics suggests that synchronization between different
brain regions does not rely on a specific frequency, but instead on the
intertwining of all frequencies within the scaling range. These findings
raise two questions: First, do all frequencies contribute in a balanced
manner to inter-regional correlation? Second, does task performance
modify scale-free cross-temporal dynamics?

To address these questions, we normalized the cross-spectrum by
the auto-power spectra to derive the coherence spectrum. The classical
and wavelet-based coherence functions between MT and pIPS for rest
and task are shown in Figs. 2D and 3D, respectively. Because coherence
Fig. 6.Cross-spectrum scaling exponents. Group-average values of the scaling exponent of the cr
where the scaling exponent significantly departed from0 (p b 0.05, Bonferroni corrected, one-sa
squares”.
is estimated as the ratio of estimated quantities, it is necessarily noisier.
For robustness,we estimate the scaling exponent of the coherence func-
tion from the auto- and cross-spectra (γXY = αXY − (HX + HY) + 1,
where αXY is the power-law exponent of the cross-spectrum, and HX

and HY are the Hurst exponents of the individual time series), rather
than from the coherence function directly.

Using the wavelet-based framework, we estimated exponents αXY

and γXY for all subjects and all region pairs, both at rest and during
task. We then computed group-level means αXY and γXY . Fig. 6 reports
the Bonferroni corrected p-values for the statistical test associated with
the null hypothesis αXY ¼ 0, which was rejected for most region-pairs,
both at rest (Fig. 6A) and during task (Fig. 6B). This result suggests
that cross-temporal dynamics in most region-pairs exhibit a non-zero
scaling exponent. Figs. 7A–B reports the Bonferroni corrected p-values
for the test against the null hypothesis γXY ¼ 0 at rest and during task
respectively. Several conclusions can be reached. First, the null hypoth-
esis γXY ¼ 0 was rejected only for a few region-pairs, 18 at rest and 19
during task, out of 210 pairs (where, due to multiple comparisons, by
chance 10 out of 210 may be rejected). Low rejection rate may stem
from two reasons: Bonferroni correction for multiple comparisons
yields a conservative result, and the statistical power for a test against
γXY ¼ 0 has been shown to decrease when ρXYj j decreases (Wendt et
al., 2009).

However, for region-pairs where the null hypothesis γXY ¼ 0ð Þ was
rejected, a couple of interesting conclusions can be drawn. First, as
shown in Figs. 7A–B, whenever departure from 0 was significant, γXY
was found tobepositive; thiswas the case both at rest (Fig. 7A) and dur-
ing task (Fig. 7B). Hence, for these pairs of regions, scale-free properties
observed in the cross-spectra convey significant extra information be-
yond those carried by the auto-spectra: The lowest frequencies within
the scaling range contribute substantially more to inter-regional corre-
lation than the highest frequencies, consistent with earlier reports
(Chang and Glover, 2010; Sasai et al., 2011; Shim et al., 2013).

Second, while a priori ρXY and γXY are two independent parameters, it
is worth noting that region pairs whereγXY ¼ 0was rejected also tended
to show large ρXY both at rest and during task; compare Figs. 1B–C to
Figs. 7A–B. In addition, region pairs exhibiting high correlations (see
Figs. 1A–B, arbitrary threshold of ρR;T

XY N0:5) systematically showed γR;T
XY N

0. These observations indicate that a strong correlation involves domi-
nant contributions of low frequencies to cross-temporal dynamics.
Importantly, these observations are not a trivial effect of dependencies,
as theoretically the limit ρXY → 1 imposes γXY → 0 (i.e., total correlation
requires a balanced contribution from all frequencies): This effect can be
seen in Figs. 8C–D, where as ρR;T

XY approaches 1, γR;T
XY approaches 0.

To further assess the evolution ofγXY from rest to task, a paired t-test
across all subjects was applied to every region pair H0 : γR

XY ¼ γT
XY

� �
.

Four region pairs showed a significant (p b 0.05, Bonferroni corrected)
oss-spectrumat rest (A) and during task (B), i.e.αR
XY andα

T
XY, respectively. Only region pairs

mple t-test) are shown. Thus, scaling is significant for all cross-spectra associatedwith “hot
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Fig. 7. Cross-coherence scaling exponents. Group-average values of the scaling exponent of the cross-coherence function at rest (A) and during task (B), i.e.γR
XY andγT

XY , respectively. Only
region pairs where the scaling exponent significantly departed from 0 (p b 0.05, Bonferroni corrected, one-sample t-test) are shown. So, scale invariance on the cross-temporal dynamics
has a more complex structure than just averaging those coming from the ROI-based univariate time series in all “hot squares”.
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difference between rest and task (Fig. 9A, R cerebellum–pIPS, hippo-
campus–R dorsolateral prefrontal cortex, thalamus–L motor cortex
and posterior cingulate cortex–superior frontal gyrus). For all significant

changes, we observed γR
XY Nγ

T
XY (Fig. 9B). In 3 out of the 4 regions pairs

where the change of γR
XY was significant, we observed γT

XY N0 which
means that although task significantly modulated γXY and made
the contribution of high frequencies to correlation more important,
the global correlation remains dominated by the contribution of low fre-

quencies. In contrast, in the R cerebellum–pIPS pair, the switch toγT
XYb0

occurred during task, making the contribution of high frequencies to
correlation more significant than that of low frequencies. Altogether,
the more balanced frequency-range contribution to correlation dur-
ing task suggests that cross-dynamics under task involves a larger
Fig. 8. Relationship between the cross-coherence scaling exponent and the linear Pearson cor
scaling exponent of the cross-coherence function is plotted as color, for rest (A) and task (B), r
coefficient for all region-pairs at rest (C) and during task (D). Within- and between-network r
contribution of the high frequencies, and is driven more by univari-
ate temporal dynamics, since γXY

T is converging to zero.
For a representative region pair (thalamus–L motor cortex), the

task-related change of the grand average (or group-level) wavelet co-
herence function is illustrated in Fig. 9C. As can be seen in Fig. 9C,
cross-temporal dynamics has larger contribution by high frequencies
during task than at rest: the coherence function (red trace) is flatter
during task. Comparing the results in Fig. 1D with Fig. 9A (paired

t-tests for H0 : Z
R
XY ¼ Z

T
XY and for H0 : γR

XY ¼ γT
XY , respectively), we

found only one region pair (hippocampus–R dorsolateral prefrontal
cortex) showing a significant change in both linear correlation ZXY

and coherence scaling exponent γXY , with both quantities decreasing
from rest to task.
relation. A–B: For region pairs with a relatively large Pearson correlation (ρXY N 0.5), the
espectively. C–D: Cross-coherence scaling exponent plotted against the linear correlation
egion pairs are shown in red and blue, respectively.
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Fig. 9. Comparison of cross-coherence scaling exponent between rest and task. A: Significant differences in cross-coherence scaling exponent between rest and task (p b 0.05, Bonferroni
corrected). B: For the four significant region-pairs in A, cross-coherence scaling exponent is shown for rest and task, respectively. Only one region-pair was within the same net-
work (PCC–SFG, within the DMN). C: Grand average (with±standard deviations of themean) of wavelet-based coherence functions between the Tha and Lmotor regions at rest (black
trace) and during task (red trace).
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Scale-free modulation and behavior performance

Lastly, we investigated the relationship between scale-free cross-
temporal dynamics, as measured by cross-coherence scaling exponent
γXY and behavioral performance asmeasured by reaction time (RT). Spe-
cifically, we assessed whether across subjects, γXY

T predicts an
individual's response speed (mean of RT across trials) and response reli-
ability (s.d. of RT across trials). Table 2A shows that, in 4 region pairs, γXYT

is significantly correlated with the standard deviation of the recorded RT
(p b 0.05, FDR-corrected). In all region pairs, the correlation coefficient
was negative, suggesting that the larger the γXY

T , the more reliable
the subject's response was across trials. Table 2B further indicates that
γXY
R − γXY

T is significantly and positively correlated to the mean RT for
three region pairs. Thus, the smaller the difference (γXY

R − γXY
T ), the

shorter the mean RT. By contrast, no significant correlation was found
between ρXYT and the mean or s.d. of RT, after correcting for multiple
comparisons.

Recalling that a positive γXY
T indicates that low-frequency range

contributes more to correlations than high-frequency range, these
observations suggest that a larger contribution of high frequencies to
correlation corresponds to poorer behavioral performance. Conversely,
the less a subject needs to mobilize high frequencies to accomplish
Table 2
Correlation between scale-free cross-temporal dynamics and task performance. A: Across-sub
RT. B: Across-subject correlation between difference in cross-coherence scaling exponent betw
FDR-corrected). Group-average values γT

XY (A) and γR
XY−γT

XY (B) are reported in the first colum

Group-average ROIX

A) γXY
T vs. σRT 0.09 R TPJ

0.05 pIPS
0.01 R cerebellum
0.19 PCC

B) γXY
R − γXY

T vs. μRT 0.06 FEF
0.13 SFG
0.1 pIPS
the task, the better his/her performance. Comparing Table 2A and B,
one can notice the specific role played by the pIPS–medial prefrontal
cortex (MPF) pair, a link between the attention and DMN networks,
which correlates with both the mean and the standard deviation of
the reaction time. In addition, the significant positive correlation
between mean RT and the γXY

R − γXY
T measure in the frontal eye field

(FEF)–ventral primary visual cortex (vRetino) pathway indicates that
the stability of the scale-free cross-temporal dynamics in this region
pair predicts the speed of task execution.

Altogether, these observations indicate that the extent to which task
modulates inter-regional correlation and the balance between different
frequencies' contribution to global correlation are negatively correlated
with behavioral performance. Thus, across subjects, the less the tempo-
ral dynamics of cross-correlation are altered during task, the better the
performance.
Discussion

Usingmultivariate analyses of fMRI signals within the framework of
scale-free dynamics, the present work sheds light on several character-
istics of brain temporal dynamics.
ject correlation between the cross-coherence scaling exponent during task and the s.d. of
een rest and task and the mean of RT. Only significant region-pairs are shown (p b 0.05,
n. For full anatomical details of each ROI see Table 1.

ROIY Correlation coefficient p-Value

R cerebellum −0.79 b10−3

MPF −0.74 10−3

dACC −0.72 10−3

FP −0.7 0.002
vRetino 0.77 b10−3

Thalamus 0.74 10−3

MPF 0.72 10−3

image of Fig.�9
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First, scale-invariance is an important aspect of brain dynamics,
being observed not only in univariate analysis of each region inde-
pendently, but also in the cross-regional temporal dynamics. This
observation links functional connectivity and scale-free dynamics
in fMRI signals — two hitherto separately studied topics. In terms of
neurophysiological interpretation, our findings have shown that the
communication between distant brain regions, which is captured by
the cross-spectrum, is brought by information/energy exchange over a
range of frequencies in a scale invariant manner, without any dominant
frequency between 0.01 and 0.1 Hz.

Second, the scale-free cross-temporal dynamics do not follow the
fractal connectivity model in many region-pairs (Fig. 7), suggesting
that: i) fMRI signals are not well described by the simple and direct mul-
tivariate extension of the classical fGn-type univariate models; ii) esti-
mation of the cross-spectrum brings extra information beyond that
contained in the auto-spectra; iii) low frequencies (close to 0.01 Hz)
contribute more to functional connectivity, and thus to communication
between regions, than high frequencies (close to 0.1 Hz). Several previ-
ous studies have also reported a stronger contribution of low frequencies
to inter-regional correlation (Chang and Glover, 2010; Sasai et al., 2011;
Shim et al., 2013) by comparing the power in different frequency bands,
yet without investigating the frequency-range balance quantified by
scaling parameters. Our study thus significantly extends these previous
reports by exposing the scale-invariance thereof and demonstrating a
link between functional connectivity and scale-free dynamics. In partic-
ular, we observed that the scaling exponent measured from the cross-
spectrum does not simply consist of an average of those estimated on
auto-spectra, since the coherence scaling exponent (γXY) departs from
zero. Also, we systematically observed that this deviation occurs in the
same direction: γXY N 0, hence cross-temporal dynamics are driven by
low frequencies.

On a technical note, the lack of scale-invariance in prior reports was
likely due to a methodological difference from our study, as the methods
used therewere not tailored to investigating long-range temporal behav-
ior (e.g., (Chang andGlover, 2010) focused on the time-evolution of inter-
regional correlations and (Shim et al., 2013) employed an autoregressive
model which accounted only for short-range correlations).

Third, in addition to a decrease in linear correlation and Hurst expo-
nent reported in previous works (He, 2011; Ciuciu et al., 2012), task in-
duces a decrease of the cross-coherence scaling exponent γXY. In other
words, cross-temporal dynamics are closer to fractal connectivity
under task. From a neurophysiological perspective, this means that the
temporal dynamics of communication between brain regions are al-
tered under task performance in terms of frequency content. In addi-
tion, these results are consistent with a previous study showing that
increased attention induces a decrease of coherence between neuronal
populations in macaques specifically in the low frequencies (Mitchell
et al., 2009, Fig. 4). Note that a priori the variations of these three param-
eters are independent; thus, the finding that they occur jointly in brain
activity is nontrivial. These findings indicate that the decrease in corre-
lation is accompanied by a stronger mobilization of high frequencies
within the scaling range in both the univariate temporal dynamics and
the multivariate cross-temporal dynamics, the latter corresponding to
amore balanced contribution of all frequencies to correlation (i.e., func-
tional connectivity).

The current task was a very simple visual detection task, which en-
gaged the visual, motor, saliency and attention systems as shown for in-
stance in (He 2011, Fig. 6), p. 13192). This simple task already impacted
functional connectivity between task-positive (attention, motor, salien-
cy, visual) and task-negative (default mode) networks, as illustrated in
Fig. 1D. The use of Bonferroni correctionmade these results very specific
and reliable. The recourse to an alternative approach like FDR for
addressing multiple comparisons would probably have shown larger
functional connectivity differences between rest and task. Nonetheless,
more demanding cognitive tasks, especially those with a learning com-
ponent, may demonstrate a larger change in functional connectivity
(Lewis et al., 2009). In the same spirit but focusing on scaling exponents
instead of correlation measures, other contributions (Zilber et al., 2012,
2013) have shown that the multifractal properties of MEG source-
reconstructed time series continuously evolve with perceptual learning
in the task-related networks associated with a visual discrimination
task.

Fourth, we observed that across subjects, a larger increase of the
high-frequency contribution to cross-temporal dynamics under
task was associated with worse behavioral performance. Hence, a
strongmodulation of cross-temporal dynamicsmay indicate difficul-
ty in performing the task, consistent with the idea that ongoing fluc-
tuations captured by low-frequency functional connectivity are
important for behavioral processes (Sadaghiani et al., 2010). Howev-
er, we also outlined that these findings may result from attention ef-
fects, as originally observed in macaques (Mitchell et al., 2009). To
further investigate such issues and disentangle attention from oper-
ative effects in the recourse to high frequencies, future work will be
devoted to the analysis of another existing MEG dataset (Zilber et al.,
2014) for which complementary eye tracker recordings will permit
to probe attention through measurements of ocular saccades in con-
junction with behavioral performance.

On a methodological note, we made use of the 28 min of resting-
state fMRI acquisition which is a relatively large amount of data com-
pared to a typical resting-state fMRI experiment. However, the dataset
was split in 4 alternating blocks of resting-state and task-related scans
of 7 min each. Thus, we computed the scaling parameter estimates for
each block individually, and then averaged the results over the 4 blocks
for each condition (rest or task). This averaging increased the robust-
ness of our analysis, compared with a single block analysis.

The use of the wavelet framework in the present work allows signif-
icant robustness in estimating univariate or multivariate scale-free dy-
namics in fMRI data, especially with respect to short sample size or the
presence of slow superimposed trends (Wendt et al., 2009; Abry and
Veitch, 1998; Torres and Abry, 2003). In the present study, results were
averaged across rest and task runs, respectively, which assumes that
they were stable across time. This might hide a source of variability as
suggested by recent studies on fMRI dynamic functional connectivity
(Chang and Glover, 2010; Allen et al., 2014; Hutchison et al., 2013;
Majeed et al., 2011; Smith et al., 2012; Kiviniemi et al., 2011; Leonardi
et al., 2013; Liu and Duyn, 2013) and a previous MEG study showing
that the amount of self-similarity might change over time (Zilber et al.,
2013). To address this issue, it would be informative for future studies
to make use of high temporal resolution fMRI (Boyacioğlu and Barth,
2012; Feinberg et al., 2010; Moeller et al., 2010; Rabrait et al., 2008),
and to explore scale-free cross-temporal dynamics examined herein in
a time-dependent manner.

Recent studies have also shown that functional connectivity
can change over time (Chang and Glover, 2010; Allen et al., 2014;
Hutchison et al., 2013; Majeed et al., 2011; Smith et al., 2012;
Kiviniemi et al., 2011; Leonardi et al., 2013; Liu and Duyn, 2013) sug-
gesting the presence of nonstationarity in fMRI correlation struc-
tures. Future work should investigate whether the frequency-range
balance of inter-regional connectivity is changing concomitantly at
critical time points where functional connectivity is reconfigured
(e.g., (Liu and Duyn, 2013)) or whether these phenomena occur in-
dependently. This issue of nonstationarity further points out the
need for continuation of the present work beyond a second-order
stationary framework. First, potential time evolutions should be in-
vestigated (following, e.g., approach in (Chang and Glover, 2010)),
yet tailored to scale-free dynamics. Second, extensions of this multi-
variate framework towards scale-free dynamics at higher statistical
orders (referred to as multifractal properties) in fMRI signals [see
(Ciuciu et al., 2008; Ciuciu et al., 2012) for univariate applications]
should be investigated. This effort should help elucidating whether de-
pendencies beyond correlation and second-order statistics play an ac-
tive role in the dynamical reconfiguration of functional connectivity.



Table 3
Results of our spike detection procedure with respect to translation and rotation
movements. Grand average results are reported separately for rest and task runs after
averaging first over all runs at the subject-level and then over all the individuals.

Rest Task

% spikes (α1) % spikes (α2) % spikes (α1) % spikes (α2)

Translation 3.6% 0.5% 3.4% 0.8%
Rotation 1.4% 0.7% 1.4% 0.6%
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Conclusion

In conclusion, by showing that scale-free temporal dynamics mani-
fest in the communication between brain regions, our results provide a
bridge between two related, but so-far separated, fields— resting-state
networks and scale-free dynamics, which have respectively studied
spontaneous brain activity in the spatial and temporal domains. In par-
ticular, we observed that the lowest frequencies contributed more to
inter-regional communication under both rest and task, but interesting-
ly, this effect was ameliorated under task performance, with different
frequencies contributing more equally to interregional correlation.
Furthermore, we found that the degree to which task performance
modulated the scaling behavior of cross-regional temporal dynamics
was correlated, across subjects, with behavioral performance, such that
smaller taskmodulationwas accompanied by faster andmore consistent
reaction times. These results should inspire future studies of the inter-
play between scale-free brain dynamics and large-scale brain networks.
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Appendix A. Spike detection procedure

We analyzed the movement parameter estimates by looking at
translation and rotation separately. As regards translation, for each
TR, run and individual, we computed the vector norm defined by
the 3 translation parameters. Then, we computed the mean transla-
tion (μt) by averaging over all TRs in a given run. We extracted sim-
ilarly the corresponding standard deviation (σt). Hereafter, we
identified the number of TRs for which the translationmovement ex-
ceeds α1 = μt ± 2σt and α2 = μt ± 3σt. We repeated this procedure
over all rest and task-related runs for each individual so as to average
the number of spikes per individual over the complete fMRI session.
The grand average number of translation spikes was eventually com-
puted by averaging over the 17 subjects who underwent the study.
The outcomes of our spike detection procedure with respect to
(wrt) translation movement are summarized in Table 3 [Transla-
tion]. They show that the presence of spikes is very negligible (less
than 1% wrt α2 threshold both in rest and task related runs).

As regards rotation, the problem is more complex. The difficulty lies
in how to collapse the 3 rotation parameters in a single quantity de-
scribing a global 3D rotation.We decided to compute the global rotation
matrix RG as follows:

RG ¼ RzRyRx ðA:1Þ

where the Rx, Ry, and Rz matrices match the pitch, roll and yaw move-
ments, respectively. Of course, composing rotations is not a commuta-
tive operation so that any alternative composition will deliver distinct
l Gaussian noise (mfGn)process synthetizedwith the same scaling exponentγXY as the one
estimated byWelch-periodogram (black) and wavelet method (red) for two of its com-

Welch (black) andwaveletmethod (red) in log–log coordinates. D: Superimposition of the
exponents are estimated from linear regression based on thewavelet estimate (dashed red

image of Fig.�10
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results. For each TR in each rest and task run, we computed the
corresponding RG using Eq. (A.1). Hence, we extracted its spectral
norm as follows:

RGk k2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λmax Rt

GRG

� �q
ðA:2Þ

where λmax(A) stands for the largest eigenvalue of matrix A. Since RG
t RG

is positive semi-definite, all its eigenvalues are bounded below by zero.
Clearly, Eq. (A.2) summarizes in a single scalar the largest rotation direc-
tion. By computing this value for all TRs and then extracting themean μr
and standard deviation (σr) over all volumes in a given run, we can
therefore define the associated thresholds α1 = μr ± 2σr and α2 = μr
± 3σr for detecting rotation movement spikes. As done before for the
translation movement, we repeated this procedure over all rest and
task-related runs for each individual so as to average the number of
spikes per individual over the complete fMRI session. The grand average
number of rotation spikes was eventually computed by averaging over
the 17 subjects who underwent the study. The outcomes of our spike
detection procedure wrt rotation movement are summarized in
Table 3 [Rotation]. They show that the presence of spikes is even more
negligible compared to what we found for translation (1.4% wrt α1

threshold and less than 1% wrt α2 threshold both in rest and in task
related runs).

Appendix B. The wavelet estimation framework

B.1. Discrete wavelet transform

Let ψ0(t) denotes a reference oscillating function with narrow
supports in both time and frequency domains, referred to as themother
wavelet. It is characterized by its number of vanishing moment, a
strictly positive integer Nψ defined as:

∀k ¼ 0;…;Nψ−1;
Z
ℝ
tkψ0 tð Þdt ¼ 0and

Z
ℝ
tNψψ0 tð Þdt≠0: B:1

Also, ψ0(t) is chosen such that the {ψj,k(t) ≡ 2− j/2ψ0(2− jt − k),
j∈ℕ,k∈ℕ} forms a basis of L2(ℝ). The discrete wavelet transform
(DWT) coefficients of X are defined as:

dX j; kð Þ ¼ X;ψ j;k

D E
: ðB:2Þ

Scale 2j qualitatively corresponds to the inverse of the frequency,
2j ~ f0 / f, where f0 is a constant that depends on the choice of ψ0(t). For
further details, readers are referred to e.g., Mallat (1998).

B.2. Wavelet coherence function

Let X and Y denote bivariate second order stationary processes. It has
been shown that (Abry et al., 1995, 2002):

EdX j; kð Þ2 ¼
Z
ℝ
ΓX fð Þ2 j Ψ0 2 j f

� ���� ���2df ðB:3Þ

EdY j; kð Þ2 ¼
Z
ℝ
ΓY fð Þ2 j Ψ0 2 j f

� ���� ���2df ðB:4Þ

EdX j; kð ÞdY j; kð Þ ¼
Z
ℝ
ΓXY fð Þ2 j Ψ0 2 j f

� ���� ���2df ; ðB:5Þ

where Ψ0 stands for the Fourier transform of ψ0 and E for the mathe-
matical expectation. The quantitiesEdX j; kð Þ2,EdY j; kð Þ2 andEdX j; kð ÞdY
j; kð Þ can thus be read as the auto- and cross-wavelet spectra,measuring
the frequency contents of data around frequency f = f02−j. Following
Whitcher et al. (2000), a wavelet-based coherence function can now
be introduced as:

CWXY 2 j
� �

¼ EdX j; kð ÞdY j; kð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EdX j; kð Þ2EdY j; kð Þ2

q : ðB:6Þ

When X and Y follow the bivariatemodel defined in Eq. (2), it yields:

EdX j; kð Þ2 ¼ ω0
X2

jαX ;EdY j; kð Þ2 ¼ ω0
Y2

jαY ;EdX j; kð ÞdY j; kð Þ ¼ ω0
XY2

jαXY

and

CWXY 2 j
� �

¼ γ02
jγXY ; with γ0∝ω0

XY=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
ω0

Xω
0
Y

q
∝ρXY :

B.3. Estimation procedure

Following Abry et al. (1995, 2002), andWhitcher et al. (2000), rele-
vant estimators for the auto- and cross-wavelet spectra can be defined
as time averages of the (squared) wavelet coefficients at scale 2 j:

SX 2 j
� �

¼ 1
nj

Xn j

k¼1

dX j; kð Þ2; ðB:7Þ

SY 2 j
� �

¼ 1
nj

Xn j

k¼1

dY j; kð Þ2; ðB:8Þ

SXY 2 j
� �

¼ 1
nj

Xn j

k¼1

dX j; kð ÞdY j; kð Þ: ðB:9Þ

Therefore, thewavelet-based coherence function can be estimated as:

dCWXY 2 j
� �

¼
SXY 2 j

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SX 2 j

� �
SY 2 j

� �q : ðB:10Þ

When X and Y follow the bivariate model defined in Eq. (2), one
obtains:

SX 2 j
� �

≃ω̂X2
jα̂X ; SY 2 j

� �
≃ω̂Y2

jα̂Y ; SXY 2 j
� �

≃ω̂XY2
jα̂XY

and

dCWXY 2 j
� �

≃γ̂02
jγ̂XY :

Fig. 10, for synthetic data, and Figs. 2–3, for the real data
analyzed here, display log SX, logSY, logSXY and logdCWXY as functions of
log22 j = j and thus illustrate the corresponding power law behaviors
for the auto and cross (wavelet) spectra and (wavelet) cross coherence.
Following Abry and Veitch, (1998) or Veitch and Abry, (2001), estima-
tion of the scaling parameters α̂X (hence Ĥx), α̂Y (hence Ĥy) and α̂XY

stems from linear regressions performed in these log-coordinate plots,
across the scaling range (j1 = log2f0/fM;j2 = log2f0/fm, tuned to match
the frequency range fm ⩽ | f | ⩽ fM). Further, the estimate of γXY is obtain-
ed as γ̂XY ¼ α̂XY− Ĥx þ Ĥy

� �
þ 1, and not as a linear regression of logdCWXY against log22j = j, cf. Wendt et al. (2009) for details.

VaryingNψ, this wavelet framework provides practitionerswith an ef-
ficient and robust tool to estimateγXY andγ0 (and thusρXY) on real-world
data and is systematically used in the presentwork to produce the results.
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B.4. Illustration on bivariate fractional Gaussian noise

The wavelet estimation framework is illustrated by application to
synthetic bivariate fractional Gaussian noise, synthesized using the the-
oretical procedure and practical codes devised in Helgason et al. (2011a,
2011b). Parameters for synthetic data are chosen to match as closely as
can be those estimated from the real data used to produce Fig. 2, and
with same sample size. It permits observing that estimated scaling
from real data, in Fig. 2, is as visually convincing as those in Fig. 10
obtained from synthetic bivariate fractional Gaussian noise, with same
parameters, known theoretically to have true scaling behaviors. Scaling
relevance is further assessed bymeans of statistical tests as described in
Appendix C below.

Appendix C. Goodness-of-fit test for multivariate scaling

Following themethodologies outlined in Clauset et al. (2009) andHe
(2011), we have implemented the following goodness-of-fit assess-
ment procedure for each subject and each pair of regions:

− estimation of the scaling and correlation parameters (HX, HY, αXY

and ρ) is performed;
− computation of the classical χ2 (sum of squared errors to the best

fitted linear model) goodness-of-fit quantities for both the auto-
and cross wavelet spectra is done;

− 1000 copies of synthetic bivariate fractional Gaussian noises, with
same parameters as data, were simulated (according to the proce-
dure theoretically devised in Helgason et al. (2011a, 2011b)) and
then for each copy, we performed estimation of HX, HY, and αXY,
and computed the classical χ2 goodness-of-fit quantity for both
the auto-wavelet spectra and the cross-wavelet spectra;

− the p-value, corresponding to the test aiming at rejecting the null
hypothesis that true data have same auto- and cross-wavelet spectra
as bivariate fractional Gaussian noise, with same parameters and
same sample size, is computed as the percentage of times the χ2

goodness-of-fit value computed from synthetic data exceeds that
computed from real data;

− the null hypothesis is rejected at the 0.05 level.
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