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Long-term priors influence visual perception
through recruitment of long-range feedback
Richard Hardstone 1, Michael Zhu1, Adeen Flinker 2, Lucia Melloni2, Sasha Devore2, Daniel Friedman 2,

Patricia Dugan2, Werner K. Doyle3, Orrin Devinsky 2 & Biyu J. He 1,2,4,5✉

Perception results from the interplay of sensory input and prior knowledge. Despite beha-

vioral evidence that long-term priors powerfully shape perception, the neural mechanisms

underlying these interactions remain poorly understood. We obtained direct cortical

recordings in neurosurgical patients as they viewed ambiguous images that elicit constant

perceptual switching. We observe top-down influences from the temporal to occipital cortex,

during the preferred percept that is congruent with the long-term prior. By contrast, stronger

feedforward drive is observed during the non-preferred percept, consistent with a prediction

error signal. A computational model based on hierarchical predictive coding and attractor

networks reproduces all key experimental findings. These results suggest a pattern of large-

scale information flow change underlying long-term priors’ influence on perception and

provide constraints on theories about long-term priors’ influence on perception.
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Perception is much more than what meets the eye. Incoming
visual input is actively shaped by internal processes such as
attention1,2, expectation3,4, and prior knowledge4–9. It is

well known that priors learnt from lifetime experiences power-
fully influence perception10–13. For instance, due to the lifelong
‘light-comes-from-above’ prior, we perceive shapes with shading
at the top as concave14–16. These long-term priors (i.e., priors that
are stably encoded in the brain, reflecting repeated past experi-
ences, or genetic influences) are context-independent and apply
to novel experiences17. Yet, the neural mechanisms underlying
long-term priors’ influence on perception remain elusive.

Two conflicting theories about the neural machinery under-
lying long-term priors’ influence on perception have been pro-
posed. According to one theory, context-independent long-term
priors act predominantly in a bottom-up fashion14,17,18, imple-
mented in the very machinery that processes sensory information.
This proposal is supported by findings showing that there is an
over-representation of neurons tuned to cardinal orientations and
centrifugal motion directions in early visual areas13,19, suggesting
that neuronal tuning in early sensory processing already reflects
common regularities in the sensory environment. By contrast, an
alternative theory suggests that prior knowledge, including those
learnt from long-term experiences, resides in higher-order brain
regions and acts on perception primarily through top-down
feedback20,21. Yet, although existing evidence suggests that prior
knowledge acquired from task-dependent cues can influence
perception through top-down feedback from frontoparietal
cortices22–24, no study to date has shown a similar top-down
mechanism for the influence of prior knowledge learnt from long-
term experiences.

Ambiguous images offer a well-controlled experimental para-
digm to address this question. When viewed, these images elicit
constant switching of perceptual outcome between two plausible
interpretations, such as the view-from-above and view-from-
below perspectives of the Necker cube (Fig. 1A). Importantly, this
perceptual switching is often asymmetrical, in a manner that
reflects prior knowledge engrained from long-term experiences.
For instance, the Necker cube is more often perceived as being
viewed from above even though it is a symmetric figure, due to
humans having viewed objects more often from above than from
below throughout their lives—the so-called ‘view from above’
prior25–27. This phenomenon provides an ideal opportunity to
examine how long-term priors guide perception and bias one
perceptual outcome to be preferred despite symmetrical bottom-
up evidence.

In line with the proposal postulating top-down influences of
long-term priors, we hypothesized that when presented with
ambiguous sensory input, prior knowledge learnt from life-
time experiences is recruited and fed back from higher-order
brain areas to lower-order areas, manifesting as an increased
feedback drive during the preferred (i.e., more commonly
experienced) percept that is congruent with long-term prior.
In addition, consistent with the predictive processing
framework28–30, we hypothesized that during the non-
preferred percept—the percept incongruent with long-term
prior—there is a stronger prediction error signal manifesting
as an increased feedforward drive in the same large-scale
cortical network.

Despite decades of research on bistable perception31,32, few
studies have probed the neural bases of perceptual asymmetry
shaped by long-term priors. Moreover, the dynamic interactions
between brain regions driving the ebb and flow of alternating
percepts remain poorly understood, and previous studies using
fMRI33–35 or magnetoencephalography36 to address this question
suffer from poor temporal resolution or limitations in source
localization, while recent studies37,38 using intracranial recordings

have had a very small number of participants (N= 2) and only
investigated the visual cortex.

To test our hypothesis, we presented two different ambiguous
images (Necker cube and Rubin face-vase illusion; Fig. 1A) to
patients undergoing invasive electrode monitoring for neuro-
surgical evaluation to treat pharmacologically resistant epilepsy.
We collected the first extensive electrocorticography (ECoG)
data set during bistable perception in 14 patients with 1321
analyzed electrodes covering all cortical lobes (Fig. 1C). With
millisecond timing precision, accurate spatial localization, and
widespread coverage, ECoG is ideal for probing dynamic infor-
mation flow across large-scale brain networks. With this dataset,
we investigated large-scale information flow during the preferred
and non-preferred percept of ambiguous images, as well as neural
activity underlying perceptual switching and the maintenance of a
percept.

Here, we show that across both ambiguous images, the pre-
ferred percept is accompanied by enhanced top-down influences
from the temporal to occipital cortex. By contrast, the non-
preferred percept is accompanied by stronger feedforward activity
in the same long-distance pathways. A computational model
incorporating attractor-network and hierarchical predictive-
coding principles provides a parsimonious explanation for the
behavioral and neural findings. Together, these results reveal a
pattern of large-scale information flow changes related to long-
term priors’ involvement in visual perception, and provide con-
straints on future theories about the interactions between sensory
processing and prior knowledge that underlie perception.

Results
Perceptual bias during bistable perception of ambiguous
images. Fourteen participants implanted with standard clinical
ECoG electrodes (grids and strips with 1-cm center-to-center
spacing), including one participant additionally implanted with
a high-density experimental grid (8 × 16 electrodes with 3-mm
center-to-center spacing; see Fig. 1C for electrode locations
pooled across all participants, and Supplementary Fig. 1 for
coverage in individual participants), performed a bistable visual
perception task in which they viewed ambiguous images and
continuously indicated what they perceived (Fig. 1A). The
images were the Necker cube and Rubin face-vase illusion,
which induce perceptual switching between two possible
interpretations of an image (hereafter referred to as percepts).
Participants were asked to passively view the images (i.e. not
volitionally hold onto a percept or intentionally switch between
percepts), and report each time their percept changed using one
of two buttons. They could also report if they perceived both or
neither interpretation (‘unsure’). The mapping between the
response buttons and the two percepts was alternated between
blocks to dissociate perceptual content-related activity from
movement-related activity.

Previous work has indicated that participants are often biased
towards one of the two percepts, in a manner that reflects prior
experience25,27. To test whether there is a perceptual bias at the
group level, we analyzed the total percentage of time that each
percept was experienced (Fig. 1B). For the face-vase image, there
was a greater percentage of time spent perceiving the vase than
the face although this difference was not significant (Wilcoxon
sign-rank test, two-tailed: df= 13, signrank= 65, p= 0.46). For
the Necker cube, participants spent significantly more time
perceiving the green-fronted cube, which corresponds to a cube
viewed from the top (df= 13, signrank= 89, p= 0.02).

For the Necker cube, the bias towards the view-from-above
percept is consistent with previous reports25,27 and congruent
with our frequent experiences of seeing cubes situated more often
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on the ground than above our head. For the Rubin face-vase
image, any perceptual bias towards the vase may be related to
the ‘object center’ bias39 due to the fixation cross being located on
the vase portion of the image, or a ‘simplicity’ bias40 whereby
participants are biased to interpret an image using a fewer
number of objects (one vase vs. two faces).

We also calculated perceptual bias (z-value) at the individual-
participant level (Supplementary Table 2) by comparing the set of
durations of the two percepts (two-sided Wilcoxon sign-rank
test). We shall hereafter refer to the percept that had longer
durations (based on the sign of z-value) in an individual
participant as that participant’s preferred percept, and the
alternative percept as the (individual-specific) non-preferred
percept. To examine whether individual perceptual bias was
stable over time, we recorded 24 additional healthy participants
performing the same task in three separate sessions, with adjacent
sessions spaced >1 week apart. The reliability of individual
perceptual bias across sessions was assessed using a one-way
model intraclass correlation (ICC)41. Individual perceptual bias
showed strong reliability for both images (FaceVase: ICC= 0.64,

F23,48= 6.38, p= 3.55e-8; Cube: ICC= 0.55, F23,48= 4.67,
p= 3.41e-6), suggesting that these biases are stable over multiple
sessions spanning weeks, and supporting the idea that they, at
least partly, reflect individual-specific long-term experiences. In
addition, there was no significant difference in perceptual bias
between the control group (averaged across three sessions,
N= 24) and the ECoG patients (N= 14) (two-sided, Wilcoxon
rank-sum test; FaceVase: z= 0.89, p= 0.37; Cube: z= 1.04,
p= 0.30), suggesting that group-level perceptual bias is similar
between patient and control populations. The sources of inter-
individual variability in perceptual bias are beyond the scope of
this study, but we speculate that factors such as an individual’s
structural brain circuit42,43 and prior assumptions about the
image44 could be important, both of which can be influenced by
past experiences through plasticity or cognitive mechanisms,
thereby contributing to long-term priors.

In what follows, we first localize neural activity underlying
perceptual switching and perceptual maintenance, then describe
directed neural influences across large-scale cortical networks that
reflect individual-specific perceptual bias.
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Fig. 1 Paradigm, behavior, and electrode locations. A Task structure. Participants viewed ambiguous images presented for one minute at a time, and
pressed buttons to indicate their alternating percepts. They were allowed to answer “unsure” for mixed percepts. The Necker cube and face-vase images
were created by one of the authors (B.J.H.) and published in a previous study33. B Percentage of time spent in each of the possible percepts for the two
images. Shown as a violin plot, which includes features of a boxplot (thick circle indicates median, thick black line is the inter-quartile range, and thin black
line extend to the most extreme data points not considered outliers), as well as a density estimate of the distribution. Each thin circle represents one
participant (n= 14). Significant difference in percentage time between the two percepts of an image was assessed with a two-sided Wilcoxon sign-rank
test. C Electrode locations for all participants. Electrodes on the left hemisphere were mapped onto the right hemisphere for visualization purpose only. For
electrode coverage in individual patients see Supplementary Fig. 1. Source data are provided as a Source Data file.

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-26544-w ARTICLE

NATURE COMMUNICATIONS |         (2021) 12:6288 | https://doi.org/10.1038/s41467-021-26544-w |www.nature.com/naturecommunications 3

www.nature.com/naturecommunications
www.nature.com/naturecommunications


Neural activity involved in perceptual maintenance and per-
ceptual switching is spatially separate but shared between
images. When viewing ambiguous images, why does our per-
ception suddenly switch at times while at other times it seems so
stable? Answering this question requires knowing which brain
regions are involved in the switching and maintenance processes
that are common for both preferred and non-preferred percepts.
Previous fMRI studies have revealed that a network of fronto-
parietal regions exhibit enhanced activity during perceptual
switching, although the functional role of such activity remains
controversial32. Electrophysiological correlates of this prominent
fMRI finding remain elusive45–47, partly due to the limited spatial
resolution of scalp EEG.

To fill this gap, we first used the extensive intracranial
electrode coverage in our dataset (n= 1321, N= 14; Fig. 1C; see
Supplementary Fig. 1 for electrode coverage in individual
patients) to identify neurophysiological underpinnings of
perceptual switching and perceptual maintenance. To this
end, we defined time periods of perceptual switching and
perceptual maintenance (Fig. 2A), with the maintenance
periods being >1 s away from a button press, and switching
periods being within ±0.5 s of a button press. For each electrode
we then compared the (log-transformed) amplitude of high-
gamma (50–120 Hz) activity (correlate of population neuronal
spiking48–50) during these periods, and designated electrodes as
‘switch’ (or ‘maintain’) if they had significantly higher (or
lower) amplitude during perceptual switching than perceptual
maintenance (one-sample t-test, two-tailed, p < 0.05; see Fig. 2B
for two example electrodes).

The distribution of switch and maintain electrodes across the
cortex is shown in Fig. 2C (see Supplementary Fig. 2 for medial
and ventral views). Qualitatively, ‘switch’ electrodes clustered
around motor areas (likely related to the button presses) and
regions of the frontoparietal network51 including the middle
frontal gyrus and dorsal parietal cortex. ‘Maintain’ electrodes
clustered in regions that have previously been implicated in
encoding perceptual content information during perception of
ambiguous images including the temporal lobe and inferior
frontal gyrus33,52. Overall, ‘switch’ electrodes were located more
dorsally than ‘maintain’ electrodes, with the MNI Z-coordinates
(describing ventral-dorsal location) significantly different
between them (Mann–Whitney, two-tailed: face-vase: z= 2.68,
p= 7.39e-3; cube: z= 5.17, p= 2.36e-7).

Previous fMRI studies typically made region-level inferences by
pooling activation magnitudes or activity pattern information
across voxels in a brain region. Here, capitalizing on the high
spatiotemporal resolution of ECoG recordings, we asked whether
there was a common set of switch (or maintain) electrodes across
the two ambiguous images, or if instead these electrodes were
specific for each image. To this end, we tallied the overlap of the
different groups (switch, maintain, and not significant) of
electrodes for the two images (Fig. 2D), and compared it to the
expected numbers if the two sets were independent. Our analysis
rejected the null hypothesis that the category of an electrode for
the Rubin face-vase image is independent of its category for the
Necker cube (χ2(4)= 378.41, p= 1.28e-80). Instead, we found a
strong overlap for congruent categories of electrodes across
images, with many more electrodes showing the same behavior
across the two images than expected by chance (Fig. 2D, red), and
no switch electrodes for one image that were maintain electrodes
for the other image.

Thus, we found widely distributed networks of electrodes
involved in perceptual switching and maintenance processes, with
the former located more dorsally than the latter. Electrodes
involved in perceptual switching and maintenance were shared
between the two different ambiguous images, suggesting a

canonical network mechanism regardless of the specific percep-
tual content.

A backbone of feedforward activity flow during bistable visual
perception. To probe cortical information flow during bistable
visual perception, we first characterized the overall information
flow pattern during the perceptual maintenance periods (Fig. 2A,
‘maintain trials’). To this end, we calculated Granger causal
influences—a measure of directed influences based on temporal
precedence53,54—between simultaneously recorded electrodes in
the same participant (see Supplementary Fig. 1 for electrode
coverage in each patient, and Supplementary Table 3, top, for the
number of electrode pairs analyzed). Previous macaque studies
have shown that Granger causality applied to intracranial
recordings can uncover visual hierarchy consistent with laminar
projection patterns55,56 and cortical hierarchy involving the
prefrontal cortex57. Here we focused on long-range inter-lobe
connections and defined a large-scale three-layer cortical
hierarchy including frontal, parietal/temporal, and occipital cor-
tices (Fig. 3C), with occipital→parietal→frontal and occipi-
tal→temporal→frontal pathways corresponding to the dorsal and
ventral visual streams, respectively58. This parcellation allowed us
to pool electrode pairs across participants whose coverage varied
by clinical needs (Supplementary Fig. 1).

We assessed the asymmetry between feedforward and feedback
Granger causal influences for every electrode pair that resided in
different lobes, and determined its significance by comparison to
a null distribution (obtained by shuffling electrode labels, see
Fig. 3A and Methods section). Thus, every inter-lobe electrode
pair was designated as significantly biased in the feedforward or
feedback direction, or not significant. We then assessed at the
cortical lobe level whether there was a significant asymmetry in
the communication between two lobes, by comparing the number
of significantly biased connections in each direction using a
binomial test (Fig. 3B). This analysis was performed separately
using maintain trials for each of the four possible percepts
(preferred and non-preferred percepts for the Rubin Face-Vase
image and Necker Cube). The results suggest that, overall,
feedforward influences outweigh feedback influences during this
task—across both percepts of both images (Fig. 3C), consistent
with the fact that our task involves visual perception driven by
external sensory input.

We next assessed the contribution of different frequencies to the
large-scale activity flow using a frequency-domain Granger causality
analysis59. Feedforward input from occipital to temporoparietal
cortices was primarily carried by high frequencies (>20 Hz) (Fig. 3D
and Supplementary Fig. 3), consistent with previous intracranial
findings in the visual hierarchy of the macaque55,56.

Together, this analysis reveals a backbone of predominantly
feedforward activity flow during bistable visual perception. We
next examined whether feedforward and feedback influences were
modulated by the specific perceptual content experienced at a
given moment and differ between the preferred and non-
preferred percepts.

Increased feedback influences during the preferred percept.
Our main hypothesis suggests that long-term priors are recruited
to guide perception of ambiguous images, resulting in an
increased feedback drive when perceiving the preferred percept
that is congruent with long-term prior, and an increased feed-
forward drive during the non-preferred percept which signifies a
stronger prediction error. To test this hypothesis, we compared
directed cortical influences between the two competing percepts
for each ambiguous image.
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To this end, we grouped ‘maintain’ trials (Fig. 2A) according
to whether the participant perceived their preferred percept or
their non-preferred percept (for individual-level perceptual
bias, see Supplementary Table 2). For every (simultaneously
recorded) electrode pair residing in different lobes (see
Supplementary Table 3, top, for the number of electrode pairs
analyzed), we calculated Granger causal influence in each
direction (feedforward and feedback) for each percept. We then
tested whether the causal influence (e.g., from electrode A to B)
is significantly different between the preferred and non-
preferred percept by comparing it with a null distribution
(obtained by shuffling trial labels, see Fig. 4A and Methods
section).

Consistent with our hypothesis, we found that the preferred
percept is accompanied by an increased feedback drive and the
non-preferred percept is accompanied by an increased feedfor-
ward drive: Fig. 4B plots significant (using an arbitrary high
threshold of p < 0.002 for visualization, given the large number of
significant connections) changes in causal influences between
percepts, with connections that are stronger during the preferred
(or non-preferred) percept shown to the left (or right).
Connections are color coded by direction: posterior→anterior
(approximating feedforward) are shown in red, and anterior→-
posterior (approximating feedback) shown in blue. It can be
seen that the preferred percept is accompanied by increased
feedback activity (more blue-purple colors) and the non-preferred
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percept is accompanied by increased feedforward activity
(more red colors).

We quantified the pattern of information flow as follows: for
each lobar pair in each direction, we calculated the number of
connections (i.e., electrode pairs) that are significantly stronger
during the preferred (or non-preferred) percept (for an example
see Fig. 4C, colored bars). For each percept, we then assessed the
asymmetry between the two directions (Fig. 4C, brackets). For
instance, between temporal and occipital lobes, there are

significantly more top-down connections that are stronger during
the preferred percept (two-sided sign test, Cube: z= 7.45, p= 9e-
14; FaceVase: z= 4.41, p= 1e-5), and significantly more bottom-
up connections that are stronger during the non-preferred
percept (two-sided sign test, Cube: z=−14.33, p= 1.5e-46;
FaceVase: z=−16.44, p= 1e-60). The results for all inter-lobe
connections are shown in Fig. 4D. The preferred percept elicits
stronger feedback activity from the temporal cortex to occipital
cortex for both images. The non-preferred percept elicits stronger

Fig. 2 A common set of electrodes involved in perceptual switching and maintenance across two ambiguous images. A From each image presentation,
time periods were extracted wherein the same percept is maintained (>1 s from button presses, ‘maintain’), and wherein the percept switched (<0.5 s from
a button press, ‘switching’). For the Granger causality analysis in Figs. 3 and 4, these periods were split into 250ms trials to improve data stationarity (see
Methods section). B Left: example time courses of high-gamma amplitude (log-transformed, baseline-corrected; see Methods section) for two electrodes
that show higher gamma activity during switching periods (top) or maintenance periods (bottom). Right: each switch period was paired with its subsequent
maintenance period seen in the violin plot (thick circle indicates median, thick black line is the inter-quartile range, and thin black line extends to the most
extreme data points not considered outliers); significance was assessed using a two-sided paired t-test. Electrode locations are marked in C. Data from
participant 1 viewing the Necker cube image. C Locations of electrodes showing ‘switch’ and ‘maintain’ behavior. Lighter shades indicate electrodes with
significant ‘switch’ or ‘maintain’ behavior for both ambiguous images; darker shades indicate electrodes with significant ‘switch’ or ‘maintain’ behavior for
one image. D Joint distribution of the number of electrodes designated ‘switch’, ‘maintain’, or non-significant (NS) across cube and face-vase images (large
font, ‘actual’), as well as the expected numbers of electrodes if category designation is independent between the two ambiguous images (small font,
‘expected’). A χ2 test was applied against the null hypothesis that the category of an electrode for one image was independent of its category for the other
image, which was highly significant (p= 1.28e-80), suggesting that category designations have significant overlap between the two images. Source data
are provided as a Source Data file.
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Fig. 3 A backbone of feedforward activity flow during perceptual maintenance. A Granger causality was calculated separately for each direction between
a pair of electrodes residing in different lobes. To assess significance, the difference in Granger causality between the two directions (‘asymmetry’) was
compared with a null distribution created by shuffling the electrode labels 1000 times for each electrode pair. B To aggregate the results across many
electrode pairs, a bias measure was calculated by comparing the number of significant inter-lobe connections in each direction using a two-sided binomial
test, separately for each percept. C Significant (p < 0.05, uncorrected) biases (as assessed in B) in inter-lobe connections, separately assessed for 2
images × 2 percepts. Lobes were assigned a level in the cortical hierarchy (bottom: occipital; middle: temporal, parietal; top: frontal) and each directed
inter-lobe connection between levels was defined as feedforward (red) or feedback (blue). Line width indicates the strength of significance. D Frequency-
domain inter-lobe biases for the face-vase image during the preferred percept (green) and non-preferred percept (magenta). Positive and negative values
correspond to feedforward and feedback biases, respectively. Horizontal bars: two-sided binomial test p < 0.05, cluster-corrected. Corresponding results
for the cube images are shown in Supplementary Fig. 3. Source data are provided as a Source Data file.
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feedforward influences from occipital cortex to temporal and
frontal cortex and from parietal to frontal cortex. We observed
inconsistent patterns in the temporal-frontal pathway between
the two ambiguous images; a finding that we further
discuss below.

For the above analysis we used all simultaneously recorded
inter-lobe electrode pairs to increase statistical power. A control
analysis including only connections where at least one electrode
was involved in perceptual switching or perceptual maintenance
(Fig. 2C; for electrode numbers per lobe see Supplementary
Table 3, middle and bottom) revealed a similar pattern of changes
in information flow (Supplementary Fig. 4B), with consistent
feedforward information flow seen from occipital to temporal
cortex during the non-preferred percept. We also examined
whether the results held if we only included participants with
significant perceptual bias (Supplementary Table 2). Again we
observed a similar pattern of top-down and bottom-up informa-
tion flow changes between the preferred and non-preferred
percept (Supplementary Fig. 4A). A final control analysis
investigated whether the results observed in Fig. 4D might be
due to mismatched temporal distances to perceptual switching,
since preferred percepts have longer durations. We selected sets

of trials from the preferred and non-preferred percepts where the
distribution of temporal distance from the nearest button press
was matched (Supplementary Fig. 4C). Applying the same
analysis approach, similar results were obtained (Supplementary
Fig. 4D), suggesting that differences in information flow between
the preferred and non-preferred percept are not due to a
difference in the temporal distance to perceptual switching.

A previous meta-analysis of perceptual switching during
bistable perception revealed a consistent set of involved regions
across multiple fMRI and transcranial magnetic stimulation
(TMS) studies32. To obtain a more fine-grained view of cortical
information flow, we defined a set of seven regions of interest
(ROIs) covering these regions (Supplementary Fig. 4E and
Supplementary Table 4). Electrodes located within 20 mm of
the ROI centers were assigned to each ROI. We then assessed
information flow between these regions using the same method as
was used for inter-lobe connectivity (Supplementary Fig. 4F).
During the preferred percept there is an increased feedback drive
from the middle frontal gyrus (MFG) to fusiform face area (FFA)
for Necker cube. During the non-preferred percept there is an
increased feedforward drive from occipital cortex to temporal-
parietal junction (TPJ) for both images, and additionally from
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occipital cortex to FFA for the cube image. Overall these results
are consistent with our main finding of increased feedforward
drive during the non-preferred percept and increased feedback
drive during the preferred percept.

We next assessed the contribution of different frequencies to
these results using a frequency-domain Granger causality
analysis. During the preferred percept there was increased
feedback influences in low frequencies (<40 Hz) from temporal
cortex to occipital cortex and from frontal to temporal cortex
(~20 Hz); during the non-preferred percept there was increased
feedforward influences from occipital to temporal cortex across a
wide range of frequencies (Supplementary Fig. 5).

Together, these analyses reveal that directed influences across
large-scale cortical networks are modulated by the specific
perceptual content experienced at a given moment in a manner
consistent with our main hypothesis: during the preferred
percept, there is enhanced top-down input from the temporal
to occipital cortices; during the non-preferred percept, by
contrast, feedforward influences from occipital to temporal and
prefrontal cortex are enhanced.

A hierarchical predictive coding model of bistable perception.
To shed light on the computational mechanisms underlying our
findings, we constructed a computational model that integrates
elements of attractor networks with hierarchical predictive cod-
ing. Previous theoretical work captured bistable perceptual
switching using attractor-network models60,61. Perceptual
switching in such models occurs due to three mechanisms:
mutual inhibition, adaptation, and noise. Mutual inhibition is
implemented by each population suppressing the other popula-
tion. Adaptation prevents one population from being con-
tinuously dominant by gradually reducing its firing rate, in turn
weakening the mutual inhibition and allowing the other popu-
lation to take over. Finally, noise provides a second route to
perceptual switching whereby random fluctuations in firing rate
can drive alternations.

Previous attractor-network models, however, have not typically
considered hierarchical interactions between brain regions (but
see62). To understand the top-down and bottom-up interactions
that ebb and flow according to perceptual content (Fig. 4), we first
extended the classic attractor-network model to incorporate
multiple layers. Motivated by multivariate decoding and con-
nectivity patterns obtained from fMRI data during bistable
perception, we previously proposed a two-layer architecture for
bistable perception33, with populations tuned to each percept
present within each layer, the lower layer representing sensory
details, the higher layer representing concepts, and mutual
inhibition only occurring within the concept layer. Building on
this architecture, to incorporate a long-term prior, we added a
third layer that introduces a bias term which continuously
enhances the population representing the preferred percept and
suppresses the population representing the non-preferred percept
(Fig. 5A). Communication between layers is carried out by
excitatory interactions between populations tuned to the same
percept. As prediction and prediction errors have been strongly
implicated in the mechanism of bistable perception29,63 we
implemented a predictive coding form of communication
between layers, whereby only unexplained activity from lower
layers propagates up as prediction errors, and predictions—
proportional to the activity in the higher layers—propagate
down29,64. Model details are described in Methods sections,
Computational Model.

The model exhibited the classic perceptual switching phenom-
enon, as seen in the alternation of firing rates between the
preferred and non-preferred populations in all three layers

(Fig. 5B). We defined the currently experienced percept based on
the population with higher firing rate in the concept layer (green
and purple shading in Fig. 5B), but since alternation was
synchronized across all three layers, defining perceptual outcome
based on the other two layers would yield similar results. The
durations of the preferred percept were on average longer than
those of the non-preferred percept (Fig. 5C), reproducing the
behavioral finding of perceptual asymmetry (Fig. 1B).

We next investigated top-down and bottom-up activity flow in
this network. To quantify top-down inputs, we summed the
prediction signals across the two populations with different
tuning preferences (Fig. 5A, green and purple), because our
empirical analysis did not distinguish between them. Top-down
prediction signals were stronger during the preferred percept
compared to the non-preferred percept, both from the prior to
concept layer and from the concept to sensory layer (Fig. 5D,
left). This result reproduces the empirical finding that top-down
inputs are stronger during the preferred percept from the
temporal to occipital cortex (Fig. 4D). In the model, this pattern
resulted from the preferred population firing at a higher rate
during the preferred percept compared to the non-preferred
populations’ firing during the non-preferred percept in the
concept and prior layers (compare the ‘up state’ of the green and
purple traces in Fig. 5B). This is in turn caused by the bias term
that continuously increases the firing rate of the preferred
population in the prior layer.

To quantify bottom-up inputs, we again summed the
prediction error signals across the two populations with different
tuning preferences. Bottom-up prediction error signals were
stronger during the non-preferred percept compared to the
preferred percept, both from sensory to concept layer and from
concept to prior layer (Fig. 5D, right). This result reproduces the
empirical finding that bottom-up inputs are stronger during the
non-preferred percept (Fig. 4D). The stronger prediction errors
occur due to the reduced firing of the population representing the
non-preferred percept in the concept and prior layers when they
are active (as compared to the preferred population during
preferred percept), leading to reduced top-down prediction in this
pathway and increased residual errors.

Together, this model explains how a static perceptual bias in
the top layer can lead to cascading differences in communication
between layers (Fig. 5E; see Supplementary Fig. 6 for the time
courses of top-down and bottom-up signals during the evolution
of a preferred or non-preferred percept): an increase in firing rate
in the upper layer due to congruence with the prior bias leads to
increased top-down flow and higher activity in the lower levels. A
decrease in firing rate in the upper layer due to incongruence with
the prior bias causes a cascade of lower activity in the lower layers
due to reduced top-down predictions, which in turn leads to
higher bottom-up prediction errors. Thus, we have shown that a
relatively minimal set of mechanisms—including attractor net-
work and hierarchical predictive coding—reproduces the empiri-
cal findings of perceptual asymmetry in the face of symmetric
bottom-up evidence and the associated alternation between top-
down and bottom-up influences across large-scale cortical
networks.

Discussion
In summary, we reveal large-scale cortical mechanisms under-
lying long-term priors’ role in guiding visual perception. Across
two different ambiguous images, we observed that the preferred
percept, which is congruent with long-term experiences, is
accompanied by strengthened feedback influences. By contrast,
the non-preferred percept is accompanied by increased feedfor-
ward influences. These results challenge theories proposing that
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long-term priors act predominantly in a bottom-up fashion17,18

and support theories suggesting that long-term priors reside in
higher-order brain regions and act on perception through top-
down feedback20,21.

Although it is well known that priors learnt through lifetime
experiences powerfully shape perception—e.g., it is nearly
impossible to see a shape with shading at the bottom as
concave16—the neural mechanisms underlying long-term priors’
influence on perception remain poorly understood. To tackle this
long-standing question, we collected an extensive ECoG dataset
of bistable visual perception, with electrode coverage of all cortical
lobes and a large number of simultaneously recorded electrodes
in each individual participant, ideal for probing the dynamic
information flow between cortical areas. Long-term experience’s
influence on shaping perceptual asymmetry when viewing
ambiguous images is well documented in the psychophysics
literature25,27, but has been largely neglected in neuroscientific
studies of bistable perception. This phenomenon allowed us to
compare, under identical visual input, when perception is and is

not congruent with long-term prior. Importantly, we presented
two different ambiguous images to each participant, with the data
from them separately analyzed, thereby providing a within-study
reproducibility and generalizability check.

By investigating information flow patterns that differ between
the two percepts for each ambiguous image, we observed that the
preferred percept is accompanied by increased feedback influ-
ences from temporal to occipital cortex (Fig. 4C, D). This finding
supports our hypothesis that prior knowledge learnt from lifetime
experiences is recruited and fed back from higher-order brain
areas to lower-order areas to guide perception of ambiguous
sensory input. This finding challenges bottom-up views of long-
term priors14,17,18, and is consistent with our computational
model showing that by introducing a bias consistent with prior
knowledge in the top layer, the model reproduced perceptual
asymmetry and the cascading changes in neural activity (Fig. 5).
By contrast, during the non-preferred percept, we found a robust
increase in feedforward influences from the occipital to temporal
and frontal cortices. This finding is consistent with our hypothesis
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motivated by the predictive processing framework28–30, suggest-
ing that the non-preferred percept is accompanied by a prediction
error signal manifesting as an increased feedforward drive in the
same large-scale cortical network.

We constructed a simple computational model of bistable
perception that combines the biophysical realism of attractor-
network models including mutual inhibition, adaptation, and
noise60,61 with hierarchy33,62 and predictive coding29,63. By
incorporating mutual inhibition between neuronal assemblies at
the same hierarchical level33,60,61 and a top-down bias consistent
with prior knowledge learnt from past experiences, the model
parsimoniously explains the asymmetry in perceptual competi-
tion observed behaviorally and the dramatic changes in large-
scale cortical information flow associated with it. Our model is
consistent with a previously proposed predictive-coding model of
bistable perception29, but also provides a concrete computational
implementation. Importantly, our experimental data provided the
first direct neurophysiological evidence for the postulated top-
down prediction and bottom-up prediction-error signals across
the cortical hierarchy29, in which the present computational
model is grounded.

A line of previous work investigated which brain areas are
involved in perceptual switching and perceptual maintenance
during bistable visual perception. These studies reported neural
correlates of perceptual switching in frontoparietal networks32

and of perceptual maintenance in visual areas38. We probed
neurophysiological activity associated with perceptual main-
tenance and perceptual switching using the extensive intracranial
recordings. We found a common set of electrodes involved in
perceptual switching across both ambiguous images that were
located primarily in dorsal frontoparietal areas, and a different set
of electrodes involved in perceptual maintenance that were
located primarily in ventral frontoparietal and lateral temporal
cortices (Fig. 2C). These results align with previous fMRI
findings32,33 and provide the first comprehensive view of elec-
trophysiological cortical activity involved in the maintenance and
switching of percepts during bistable visual perception. We note
that due to the participant reporting the perceptual switch, the
switch-related activity identified herein contains motor and
decision-related neural activity. While ‘replay’ conditions and no-
report paradigms65 have been used to separate these confounding
activities in the context of binocular rivalry-induced bistable
perception, such experimental manipulations are currently not
possible with static ambiguous images such as those investigated
herein.

Our study thus presents both neural mechanisms specific to
each perceptual content (large-scale cortical information flow that
varies between preferred and non-preferred percept) and neural
mechanisms common to the competing perceptual contents
(neural activity associated with perceptual switching and per-
ceptual maintenance). An important direction for future studies is
to elucidate the relationship between these content-specific and
non-content-specific neural mechanisms. This question could be
approached by investigating the interactions between neuronal
groups coding the preferred/non-preferred percept at each level
of the cortical hierarchy and the neuronal groups promoting
perceptual switching/maintenance (e.g., by using multiple high-
density grids in the same participant). Such investigation can
further test and refine the computational model put forth herein.

Previous studies have debated whether neural activity involved
in perceptual switching during bistable perception embodies an
attentional mechanism32. This remains an open question since
many of the brain regions involved in perceptual switching reside
in frontoparietal areas known to be involved in the control of
attention. A bottom-up attentional account, however, cannot
explain our main finding of changes in cortical information flow

with preferred vs. non-preferred percept. If the preferred percept
was experienced more due to bottom-up effects such as salience
then it should attract more bottom-up attention, but instead the
non-preferred percept is associated with stronger bottom-up
influences. Second, increased top-down influences during the
preferred percept and increased bottom-up influences during the
non-preferred percept are observed in the occipitotemporal ven-
tral visual pathway outside areas involved in the volitional control
of top-down attention (Fig. 4D). By contrast, a hierarchical pre-
dictive coding account postulating top-down prediction signals
and bottom-up prediction error signals effortlessly explains our
findings, as shown by the computational model presented herein.

In this study, we investigate long-term priors—i.e., priors that
are stably encoded in the brain, reflecting repeated past experi-
ences or genetic influences. At the same time, it is also important
to consider the potential contributions of stimulus characteristics
and eye movements to the present findings. Both factors are
known to influence perceptual asymmetry during bistable
perception66. For instance, the visual field location of a presented
stimulus can influence perceptual asymmetry: When the center of
a Necker cube is shifted to the right or higher than the fixation
location, the ‘view-from-above’ percept is enhanced, and vice
versa67 (also see Supplementary Fig. 7); when the Rubin face-vase
image is presented in left or right visual field (instead of center
fixation), the face percept is enhanced (Supplementary Fig. 7).
Both of these effects can be explained by the bottom-up sensory
information coming from the fovea being stronger than that from
the periphery. However, it is unlikely that stimulus characteristics
explain our findings. First, the images were always presented at
center fixation; thus, at least in the case of the Necker cube,
sensory evidence supporting the two percepts is entirely sym-
metric (although the involved sensory/low-level neural popula-
tions may still be asymmetric). Second, all of our neural data
analyses were grounded in perceptual biases defined at the indi-
vidual participant level. Our behavioral data collected in a group
of healthy participants (N=24) suggest that perceptual bias
within an individual is stable across multiple sessions spanning
weeks (see Results). In addition, an online behavioral study
(N=46) established that perceptual bias within an individual is
strongly correlated across stimulus conditions (Supplementary
Note 1). Third, our online behavioral study also confirmed that
the perceptual bias for the Necker cube is not driven by the color
scheme chosen (Fig. 1A), as swapping the positions of the blue
and green edges resulted in an identical ‘view-from-above’ per-
ceptual bias (Supplementary Note 1). Lastly, if stimulus char-
acteristics or low-level asymmetry in sensory encoding were the
primary factor driving perceptual asymmetry in this experiment,
we should expect the opposite pattern to the present findings, as
the preferred percept should be associated with stronger sensory
information, and in turn, stronger bottom-up signaling.

The potential effect of eye movements is related to the known
influence of stimulus visual field location on perceptual asym-
metry. In our experiment, participants were asked to fixate at the
center of the screen throughout the experiment (Fig. 1A), but we
did not have eye-tracking capabilities within the patient rooms to
confirm this on a trial-by-trial basis. However, an eye-movement
account of our results is highly unlikely: First, in the ROI-based
information flow analysis (Supplementary Fig. 4E–F), there was
no significant influence of frontal-eye-field (FEF, a region
involved in the control of eye movements) on other regions.
Second, if the change in perception were primarily driven by eye-
movements, then both the preferred and non-preferred percepts
should be associated with a similar pattern of large-scale infor-
mation flow related to eye-movements. This would be very dif-
ferent from the push-pull pattern of bottom-up vs. top-down
information flow we observed.
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We observed substantial inter-participant variability in the
overall perceptual bias. While the view-from-above prior is a
well-established long-term prior, formed from a lifetime of visual
experiences and informative about an individual’s psychiatric
status25, it is possible that individual participants’ perception is
influenced by additional short-term biasing effects such as
priming, adaptation, or volitionally applying more attention to
one percept than the other66–70. Nonetheless, several reasons
suggest that long-term priors provide the most parsimonious
explanation for the perceptual bias observed herein: first, the
present paradigm, involving long image presentations (60 s) and
inter-trial interval (7–13 sec), did not involve classic manipula-
tions that induce priming or adaptation; second, participants
were instructed to avoid volitionally directing attention to influ-
ence perceptual outcome; third, the group-level perceptual bias
for the Necker cube is consistent with the effect well documented
in the literature; fourth, the behavioral data from a cohort of
healthy participants performing this task in multiple sessions
spanning several weeks demonstrated that the perceptual bias is
stable within an individual over time.

To focus on neural activity underlying perceptual content, we
investigated cortical information flow during ‘maintain’ periods,
defined as >1 s away from a button press. Because the actual
perceptual switch precedes the button press by a variable amount
of time (i.e., reaction time) that is unknown on any given trial,
this approach ensures the veracity of the perceptual content
during analyzed time periods and avoids switch-related activity
(e.g., those related to decision-making and report). It is possible
that these ‘maintain’ periods contain neural activity related to
post-perceptual associations (e.g., semantic associations) but such
associations are unlikely to account for changes in large-scale
bottom-up and top-down information flow as observed here, as
post-perceptual semantic processing is likely instantiated by
associative activations within the semantic/default-mode
network71–73. Furthermore, our control analysis (Supplementary
Fig. 4C–D) showed that matching the temporal distance to button
press between preferred and non-preferred percepts yielded the
same findings, suggesting that the observed cortical information
flow is largely stable during the ‘maintain’ periods, thereby pro-
viding a potential neural underpinning to the momentarily stable
perceptual experience in these brief periods. Future investigation
using time-resolved Granger causality analysis may facilitate
bridging the current results focused on perceptual maintenance
with previous reports focused on perceptual switching e.g., de
Jong et al.37.

The present study opens several questions: First, we investi-
gated inter-lobe communication following a three-layer hierarchy
(occipital → temporal/parietal → frontal), which is a relatively
coarse measure of information flow. While this method was
necessary to get a tractable large-scale cortical view of informa-
tion flow from a set of participants with heterogeneous electrode
placement, future studies with denser electrode sampling (e.g.,
using the HD-grid employed in one of the patients herein) could
shed light on more fine-grained information flow. Second,
because the electrode coverage varies from participant to parti-
cipant (a necessary constraint of intracranial investigation in
humans), understanding the neural basis of interindividual
variability in perceptual dynamics and perceptual bias would
require a larger ECoG sample than the present study. Third, the
level in the visual hierarchy at which the bias occurs merits
additional investigation. While we show in the computational
model that a bias (prior) at the top level of the hierarchy pro-
pagates down, it could also be the case that the bias occurs at a
mid-level of the hierarchy and then propagates down to earlier
levels. This could potentially explain why for the Necker Cube we
observed feedback/feedforward changes consistent with a prior

being located in frontal cortex, whereas for the FaceVase image,
the feedback influences appeared to originated in temporal cortex.
Fourth, a small proportion (28.6%, see Supplementary Table 2) of
participants spent more time perceiving the blue-fronted cube,
corresponding to a cube viewed from the bottom. This statistic is
similar to that reported in a previous Necker cube study (rea-
nalysis of data shows that 5 out of 16 healthy participants
spent more time perceiving the view-from-below perspective)25.
Currently, the source of this individual variability is unknown,
although from an ecological perspective it is difficult to imagine
that someone might have more experience viewing objects from
below than from above. We speculate that an additional prior
about whether the cube is floating or sitting could influence an
individual’s perceptual bias and contribute to this individual
variability. Such a mechanism would be similar to a recent
observation that assumptions about background illumination
influence an individual’s color perception in a highly robust and
stable manner74. Lastly, studies have shown that long-term priors
can be adaptively modified with training75. An interesting ques-
tion for future investigation is how such training sculpts the large-
scale cortical information flow that carries the effect of long-term
priors, and whether training can restore perceptual priors absent
in certain patient populations25.

Finally, we note that there is some evidence that patients with
autism spectrum disorder exhibit aberrant bistable perceptual
dynamics76,77 and an absent effect of the ‘view-from-above’ prior
when viewing ambiguous images such as the Necker cube25

(although replications of these findings will be necessary to
demonstrate their robustness78). Thus, the present findings may
pave the way for a better understanding of the pathophysiology
underlying perceptual disturbances in these patients79.

In conclusion, we demonstrate that long-term priors’ influence
on perception is carried by top-down feedback inputs across the
large-scale cortical hierarchy to occipital visual cortex. These top-
down influences wax and wane with reciprocal bottom-up feed-
forward inputs in the same long-distance pathways that are
consistent with prediction-error signaling29,30. These findings
have implications for understanding how perception is shaped by
lifelong experiences20,21, how the perceptual system resolves
ambiguity that is pervasive in the natural environment80,81, and
how perception might vary across individuals with or without
neuropsychiatric illnesses depending on an intricate interplay
between top-down and bottom-up processes82,83.

Methods
Participants. Fourteen epilepsy patients with implanted electrode strips and/or
grids performed the bistable perception task while undergoing surgical evaluation
with iEEG monitoring at NYU Langone Health Comprehensive Epilepsy Center.
The experiment was approved by the NYU Langone Health Institutional review
board and all patients provided written informed consent. All participants’
demographic and clinical characteristics are included in Supplementary Table 1.

To assess the within-participant stability of perceptual bias over time, we
additionally recorded 24 healthy participants (mean age, 25.7; range: 19–37 yo; 15
females; all right-handed) performing the bistable perception task on three separate
occasions, with adjacent sessions spaced at least 1 week apart. The study was
approved by the New York University School of Medicine Institutional Review
Board and all participants provided written informed consent.

iEEG recordings. iEEG was recorded from implanted subdural platinum-iridium
electrodes embedded in silastic sheets (2.3 mm diameter contacts, 10 mm center-
to-center spacing, Ad-Tech Medical Instrument, Racine, WI). The decision to
implant, placement of recording electrodes, and the duration of invasive mon-
itoring were determined solely on clinical grounds and without reference to this
study. Electrodes were arranged as grid arrays (8 × 8 contacts, 10 mm center-to-
center spacing), linear strips (4 to 12 contacts) or some combination thereof.

One participant (#14) had an additional high-density grid (8 × 16 contacts,
1 mm diameter contacts, 3 mm center-center spacing, PMT corporation,
Chanassen, MN) implanted over the occipital lobe. The participant provided
written informed consent under the same IRB protocol with a specific question
included about the implantation of a high-density grid. The occipital cortex is

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-26544-w ARTICLE

NATURE COMMUNICATIONS |         (2021) 12:6288 | https://doi.org/10.1038/s41467-021-26544-w |www.nature.com/naturecommunications 11

www.nature.com/naturecommunications
www.nature.com/naturecommunications


sampled less frequently in the typical ECoG patient population due to clinical
needs. Data from this participant thus were crucial to boosting the statistical power
to test our hypotheses regarding cortical information flow to/from the occipital
visual cortex. The research grid implantation was carried out under an NIH
BRAIN-funded project, which specifically targeted the visual cortex (NIH
R01MH111417; PI: Devinsky).

Within 24 h after surgical implantation of electrodes, patients underwent a
post-operative brain MRI to confirm subdural electrode placement. Electrodes were
localized and mapped onto the pre-implant and post-implant MRI (or CT) using
geometric models of the electrode strips/grids and the cortical surface84. The
coordinates for each electrode were then transformed into the common MNI space.
For this study, we automatically assigned each electrode to one of the cortical lobes
(frontal, parietal, temporal, occipital) using the Brainnetome atlas85. We also
defined ROIs using the coordinates used in32, and assigned electrodes located
within 20 mm of the ROI centers to those ROIs.

Clinical (macroelectrode) recording equipment. Recordings from iEEG elec-
trode arrays were made using one of two amplifier types (as amplifiers were
upgraded during the period of the study): NicoletOne amplifier (Natus Neurolo-
gics, Middleton, WI), bandpass filtered from 0.16–250 Hz and digitized at 512 Hz.
The patient with the high-density grid (#14) was recorded with the Neuroworks
Quantum Amplifier (Natus Biomedical, Appleton, WI) recorded at 2048 Hz,
bandpass filtered at 0.01–682.67 Hz and then downsampled to 512 Hz. ECoG
signals were referenced to a two-contact subdural strip facing toward the skull near
the craniotomy site during the recording (and re-referenced offline during analysis
to common-average reference). A similar two-contact strip screwed to the skull was
used for the instrument ground.

Experimental setup. Participants performed the task while sitting upright in their
hospital bed with a laptop placed on a hospital table. Distance from the partici-
pant’s eyes to the center of the laptop screen was 55 cm, and all images presented
subtended a visual angle of 12°. This choice of image presentation size was
motivated by previous experiments using ambiguous images67,86 (see Supple-
mentary Table 6). During the task the participants indicated their responses using
the arrow keys on the laptop (← and → for the two percepts, ↑ for unsure). All
participants gave their responses using their right hand. Triggers indicating task
timing and button presses were sent via the laptop’s parallel port to the DC ports
on the amplifier in order to synch task timing and ECoG data stream. The
experiment was programmed in Presentation (Neurobehavioral Systems, Inc.).

Task paradigm. The experiment consisted of blocks lasting approximately 7 min
each, and was adapted from an experiment previously ran in fMRI33 using the
same images. During each trial (Fig. 1A), participants first received an instruction
screen which informed them which image was about to be presented (either
Rubin’s Face-Vase or Necker Cube), and the response mapping for the three
possible percepts (Vase/Face/Unsure or Green-fronted cube/Blue-fronted cube/
Unsure). After a 2-second fixation period, the ambiguous image was then presented
at the center of the screen for 60 seconds, while participants fixated on the cross in
the center of the image. During this time participants pressed keys to indicate their
current perception of the image (one key for each percept, and an additional key
for ‘unsure’). Participants were instructed to press the ‘unsure’ key if they
experience neither or both of the possible percepts. Six trials were presented during
each block. Response mapping for the two percepts stayed constant throughout
each block, but was alternated between blocks. The number of blocks recorded and
analyzed for each participant are included in Supplementary Table 1. Across all 14
participants, two blocks were recorded but were not analyzed, one due to electrodes
becoming disconnected due to patient movement, and one due to the participant
dozing off during the block.

Behavioral analysis. For each ambiguous image presentation (60 s), time periods
were split between consecutive button presses. The time periods before the first
button press and after the final button press during an image presentation were
excluded from the analysis. The percentage of the total amount of time spent in
each possible percept (Fig. 1B) were then calculated for each participant. Group-
level perceptual bias effects were assessed by a Wilcoxon sign-rank test across
participants for each ambiguous image separately. For individual participant-level
preference, subsequent time periods of the different percepts (from the same image
presentation) were paired, and a Wilcoxon sign-rank test applied (Supplementary
Table 2).

ECoG data pre-processing. ECoG data was imported into MATLAB using the
Fieldtrip toolbox87, and then split into individual task blocks. The power spectrum
and raw signal of each electrode were manually inspected. Noisy channels were
removed. Sources of ‘noise’ excluded from analyses included saturation, muscle-
and movement-related artifacts, epileptiform activity and poor contact. Data were
then detrended and band-stop filtered to remove line noise and its harmonics
(zero-phase-shift, 3rd-order Butterworth filter centered on 60, 120, 180, and
240 Hz, with 2–4 Hz bandwidth dependent on participant). On inspection of the
power spectra it was observed that some channels had a strong peak at 1–2 Hz that

did not appear to be neurophysiological in origin. Aligning this artifact to the
electrocardiogram (ECG) showed that this oscillation was tightly coupled to the
heartbeat, which could plausibly be caused by slight movement of the electrode due
to blood vessel pulsation. To clean this artifact we adapted a previously published
heartbeat removal algorithm88 (see Heartbeat artifact removal). After artifact
cleaning, the data from each electrode were re-referenced to the common-average
reference.

Heartbeat artifact removal. For each participant that had an artifact-free ECG
signal recorded and a heartbeat-related artifact present in the ECOG data (N= 10),
an algorithm was applied to remove this heartbeat-aligned component without
distorting the rest of the signal88. First, heartbeats were detected as threshold
crossings of the ECG signal. Then for each ECoG electrode, the signal was split into
a set of heartbeat-aligned trials which had the duration equal to twice the median of
the inter-heartbeat interval, and were centered on the time of the heartbeat. The
trial-averaged heartbeat-evoked waveform was then low-pass filtered (zero-phase-
shift 3rd-order Butterworth filter at <5 Hz), with a tapered window applied (Tukey
window, 10% cutoff). This provided a template of the artifact component that
could then be removed from the ECoG signal, time-synched to each heartbeat,
without a discontinuity arising between neighboring heartbeats. For those parti-
cipants without a clean ECG signal (N = 4), electrodes with heartbeat-related
artifacts were removed from analyses.

Switch and maintain analysis. Each electrode was assessed for perceptual
switching- and maintenance-related behavior using high-gamma activity during
‘switching’ and ‘maintain’ periods. To extract high-gamma activity, the pre-
processed signal of each electrode in each block was filtered at 50–120 Hz using a
zero-phase-shift 3rd-order Butterworth filter. Then the amplitude envelope was
extracted by taking the absolute of the Hilbert transform. The amplitude envelope
timeseries was then log transformed (base 10) into approximately normally dis-
tributed data, and the mean (of the log-transformed amplitude envelope) of each
block was removed.

For each image presentation (60 sec long), data were split into perceptual
switching periods and perceptual maintenance periods (Fig. 2A, orange and blue).
Perceptual-switching periods were defined as periods around the button press
(from 500 ms before to 500 ms after a button press). Perceptual-maintenance
periods were defined from 1 s after a button press to 1 s before the next
button press.

Each electrode was assessed for perceptual switching- and maintenance-related
behavior using the ‘switching’ and ‘maintain’ periods defined above. To this end,
each perceptual-switching period was paired with the subsequent perceptual-
maintenance period. The mean log-transformed high-gamma amplitudes during
these periods were then compared using a paired t-test (p < 0.05, two-tailed).
Electrodes were assigned as ‘switch’ if it showed higher gamma-band amplitude
during switching periods, and ‘maintain’ if its gamma-band amplitude was
significantly higher during maintenance periods. To assess whether the same group
of electrodes participated in perceptual switching (or maintenance) across the two
ambiguous images (Fig. 2D), independence of the category designations of
electrodes for the Face-Vase and Cube images was assessed using a chi-squared
test, where a significant finding rejects the null hypothesis that they are
independent.

Assessing information flow during perceptual maintenance with granger
causality. In order to assess information flow during the maintenance of a percept,
parametric Granger causality analysis was applied to each pair of electrodes that
resided in different lobes using the MVGC Toolbox59.

For each block, broadband data for each electrode was filtered at <50 Hz (zero-
phase-shift 3rd-order Butterworth filter), and downsampled to 256 Hz. ‘Maintain
trials’ were then extracted from perceptual maintenance periods for each
perceptual content (e.g. Green-fronted cube or Blue-fronted cube) separately, by
splitting each perceptual-maintenance period into 250 ms non-overlapping
windows (Fig. 2A, green and magenta). Equal numbers of ‘Maintain trials’ between
percepts were selected for each image by dropping equally spaced trials from the
percept with longer durations. The low-pass filtering and trial length were chosen
to improve stationarity of the data within each trial (i.e., 250 ms window), which is
necessary for Granger causality analysis.

Granger causality was applied (in time and frequency domain) to ‘Maintain
trials’ from each percept separately. The model order for Granger causality was
selected by first obtaining the optimal model order using the full model (Bayesian
Information Criteria), and then selecting the median model order pooled across all
pairs of electrodes. The model order used was 14 (54.7 ms). For frequency-domain
Granger causality, the frequency resolution was 0.5 Hz. Granger causal influences
calculated in the time and frequency domains were entered into the following two
analyses.

Feedforward-feedback asymmetry granger causality analysis. To assess whe-
ther there was an asymmetry in feedforward-feedback drive (Fig. 3) for an indi-
vidual connection (calculated by time-domain Granger causality), a null
distribution of Granger causal influence values was created for each inter-lobe
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electrode pair (Fig. 3A) by shuffling the electrode labels (1000 permutations) before
applying Granger Causality analysis. Asymmetry for each connection was calcu-
lated as the subtraction of the feedback Granger causal influence from the feed-
forward Granger causal influence. Connections with significant feedforward bias
had asymmetry >97.5 percentile of the null distribution, and significant feedback
bias if less than 2.5 percentile of the null distribution (which is equivalent to
p < 0.05 in a two-sided test) (Fig. 3A).

To assess whether there was an asymmetry in feedforward-feedback drive
between lobes (Fig. 3B, C), the number of significant feedforward connections
between lobes A and B was compared to the number of significant feedback
connections. A binomial test assessed whether the imbalance of information flow
was significant (p < 0.05, MATLAB function signtest, approximate method).

To assess asymmetry in the frequency domain, results from frequency-domain
Granger causality analysis were used. Asymmetries at the individual connection
and inter-lobe level were calculated for each frequency bin using a similar approach
as for the time-domain analysis described above. Significant clusters of frequencies
were identified by the following procedure, which corrects for multiple
comparisons through a nonparametric permutation-based approach (Fig. 3D and
Supplementary Fig. 3). A cluster was defined as a contiguous set of frequencies
where the inter-lobe bias was significant (p < 0.05) and the sign of the inter-lobe
bias was the same. The cluster size (‘summary statistic’) was the absolute value of
the sum of the statistic from each of the binomial tests in this set of frequencies.
The maximum cluster size was calculated for each of the 1000 permutations, and
clusters from the original data were assigned as significant if their size was larger
than the 95th percentile of the maximum cluster size from the shuffled data
(corresponding to p < 0.05, two-tailed cluster-based permutation test). This method
was applied separately for each inter-lobe interaction.

Changes in information-flow patterns with perceptual content and perceptual
bias. To assess whether the strength of an individual directed connection (calculated
by time-domain Granger causality) changes significantly between the preferred and
non- preferred percept (Fig. 4), a null distribution of Granger causal influence values
was created (Fig. 4A) by shuffling the trial labels (preferred vs. non- preferred
percept) (1000 permutations) before applying Granger Causality analysis. As with
the previous analysis (Fig. 3), all inter-lobe electrode pairs were assessed in this
analysis. For each directed connection, percept-related change was calculated as the
subtraction of Granger causal influence during non-preferred percept from that
during the preferred percept. Directed connections with significant preferred-
percept bias had percept-related change greater than the 97.5th percentile of the null
distribution, and significant non-preferred percept bias if less than the 2.5th per-
centile of the null distribution (which is equivalent to p < 0.05 in a two-sided test)
(Fig. 4A). In the plotting in Fig. 4B, it is possible that Granger causal influences in
both directions for an electrode pair have significant percept-related changes, in
which case two separate lines were plotted connecting the same pair of electrodes.

To assess whether maintaining a specific percept increased more the
feedforward or the feedback drive between two lobes, we compared the number of
significantly biased connections for that percept in each direction (Fig. 4C). A
binomial test assessed whether the imbalance of information flow was significant (p
< 0.05, MATLAB function signtest, approximate method). In a control analysis, we
restricted the analyzed connections to inter-lobe electrode pairs where at least one
of the electrodes was classified as a ‘Switch’ or ‘Maintain’ electrode (Supplementary
Table 3, Supplementary Fig. 4B). The rest of the analysis was the same as
described above.

To assess percept-related changes in directed influences in the frequency
domain (Supplementary Fig. 5), percept-related changes for individual directed
connections and inter-lobe asymmetries were calculated for each individual
frequency. Significant frequency-domain clusters were assessed using the same
cluster-based permutation method as described in the section above.

Computational model. The computational model (Fig. 5A) consists of 3 layers
[prior (P), concept (C), sensory (S)], each containing one neural population for the
preferred percept (PP) and one for the non-preferred percept (NPP). Each neural
population (layergroup) has a mean firing rate associated with it (e.g. PPP is the firing
rate associated with the preferred population of the prior layer). Firing rates change
over time according to the inputs it receives, which include adaptation, prediction
error, and noise and can include perceptual bias, mutual inhibition, and prediction
depending on which layer the population is in. Adaptation, mutual inhibition and
noise are implemented as in Huguet et al.61. For the population x, adaptation (αx)
changes over time according to:

τa
dax
dt

¼ �ax þ FðxÞ ð1Þ

where x is the firing rate of population x, and F is the input-output function
described below. Mutual inhibition only occurs at the concept layer, and is pro-
portional to the rate of the other population in that layer (e.g. −βCNPP is the mutual
inhibition that the preferred population receives from the non- preferred in the
concept layer). Noise (nx) is implemented as a separate Ornstein-Uhlenbeck

process61 for each population x.

dnx
dt

¼ � nx
τn

þ σ

ffiffiffiffiffi

2
τn

s

ξðtÞ ð2Þ

Where ξ (t)is a white noise process with mean of 0 and standard deviation of 1.
Prediction error coming into a layer was calculated as the subtraction of the rate

of that layer from the rate of the layer below64, with a minimum prediction error
set to zero so that prediction errors effects were always excitatory (e.g. max(0,
δC(SPP − CPP)) is the prediction error that the preferred population of the concept
layer receives from the sensory layer). Prediction coming into a layer was
implemented proportional to the rate of the layer above (e.g. ηPPPP is the prediction
that the concept layer preferred population receives from the prior layer). The final
term is Bias which is a constant representing a lifelong prior that increases the
firing rate of the population representing the preferred percept in the prior layer,
and suppresses the population representing the non-preferred percept.

The differential equations governing the evolution of firing rates are:
Prior Layer (with inputs: -adaptation, ±bias, +prediction error, +noise)

τP
dPPP

dt
¼ �PPP þ Fð�+aPPP þ Biasþmaxð0; δPðCPP � PPPÞÞ þ nPPP

Þ ð3Þ

τP
dPNPP

dt
¼ �PNPP þ Fð�+aPNPP

� Biasþmaxð0; δPðCNPP � PNPPÞÞ þ nPNPP
Þ
ð4Þ

Concept layer (with inputs: -adaptation, -mutual inhibition, +prediction error,
+prediction, +noise)

τC
dCPP

dt
¼ �CPP þ Fð�+aCPP

� βCNPP þmaxð0; δCðSPP � CPPÞÞ þ ηPPPP þ nCPP
Þ ð5Þ

τC
dCNPP

dt
¼ �CNPP þ Fð�+aCNPP

� βCPP þmaxð0; δCðSNPP � CNPPÞÞ þ ηPPNPP þ nCNPP
Þ ð6Þ

Sensory layer (with inputs: -adaptation, +prediction error, +prediction,
+noise)

τS
dSPP
dt

¼ �SPP þ Fð�+aSPP þmaxð0; δSðIPP � SPPÞÞ þ ηCCPP þ nSPP Þ ð7Þ

τS
dSNPP
dt

¼ �SNPP þ Fð�+aSNPP þmaxð0; δSðINPP � SNPPÞÞ þ ηCCNPP þ nSNPP Þ
ð8Þ

The input-output function (F) was modeled as a sigmoid function61.

FðyÞ ¼ 1

1þ e
θ�y
k

ð9Þ

with threshold θ= 0.2 and k= 0.1. All differential equations were integrated using
the Euler-Maruyama method with time step 1ms, and the model was run for
5 × 107 timesteps. All parameters used are given in Supplementary Table 5. In
preliminary testing, we found that model behavior is robust to a range of
parameters.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Raw data from the online behavioral experiment is deposited to the figshare repository
and can be downloaded at: https://doi.org/10.6084/m9.figshare.16716106. For behavioral
and ECoG data collected from ECoG patients, source data are provided with this paper.
An excel sheet provides source data for all main and Supplementary Figure. In addition,
processed data and scripts to reproduce all figures are available at: https://github.com/
BiyuHeLab/NatCommun_Hardstone2021. Trial-level behavioral data from the ECoG
patients can be found in the source data for Table S2. Because of their confidential
nature, raw ECoG data cannot be released to the public, but preprocessed data can be
made available in de-identified form, upon reasonable request to the corresponding
author. The Brainnetome atlas used in this study can be downloaded from https://
atlas.brainnetome.org/download.html. Source data are provided with this paper.

Code availability
We used publicly available open source software toolboxes and custom scripts written in
MATLAB to analyze our data. Source code required to run all simulations, as well as
processed datasets and scripts required to generate all figures presented here, are
available at: https://github.com/BiyuHeLab/NatCommun_Hardstone2021.

Received: 30 September 2020; Accepted: 8 October 2021;

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-26544-w ARTICLE

NATURE COMMUNICATIONS |         (2021) 12:6288 | https://doi.org/10.1038/s41467-021-26544-w |www.nature.com/naturecommunications 13

https://doi.org/10.6084/m9.figshare.16716106
https://github.com/BiyuHeLab/NatCommun_Hardstone2021
https://github.com/BiyuHeLab/NatCommun_Hardstone2021
https://atlas.brainnetome.org/download.html
https://atlas.brainnetome.org/download.html
https://github.com/BiyuHeLab/NatCommun_Hardstone2021
www.nature.com/naturecommunications
www.nature.com/naturecommunications


References
1. Carrasco, M., Ling, S. & Read, S. Attention alters appearance. Nat. Neurosci. 7,

308–313 (2004).
2. Drew, T., Vo, M. L. & Wolfe, J. M. The invisible gorilla strikes again: sustained

inattentional blindness in expert observers. Psychol. Sci. 24, 1848–1853 (2013).
3. Summerfield, C. & Egner, T. Expectation (and attention) in visual cognition.

Trends Cogn. Sci. 13, 403–409 (2009).
4. de Lange, F. P., Heilbron, M. & Kok, P. How do expectations shape

perception? Trends Cogn. Sci. 22, 764–779 (2018).
5. Aru, J. et al. Local category-specific gamma band responses in the visual cortex

do not reflect conscious perception. J. Neurosci. 32, 14909–14914 (2012).
6. Albright, T. D. On the perception of probable things: neural substrates of

associative memory, imagery, and perception. Neuron 74, 227–245 (2012).
7. Dolan, R. J. et al. How the brain learns to see objects and faces in an

impoverished context. Nature 389, 596–599 (1997).
8. Tovee, M. J., Rolls, E. T. & Ramachandran, V. S. Rapid visual learning in

neurones of the primate temporal visual cortex. Neuroreport 7, 2757–2760
(1996).

9. Flounders, M. W., Gonzalez-Garcia, C., Hardstone, R. & He, B. J. Neural dynamics
of visual ambiguity resolution by perceptual prior. eLife 8, e41861 (2019).

10. Gregory, R. L. Knowledge in perception and illusion. Philos. Trans. R. Soc.
Lond. Ser. B Biol. Sci. 352, 1121–1127 (1997).

11. Weiss, Y., Simoncelli, E. P. & Adelson, E. H. Motion illusions as optimal
percepts. Nat. Neurosci. 5, 598–604 (2002).

12. Girshick, A. R., Landy, M. S. & Simoncelli, E. P. Cardinal rules: visual
orientation perception reflects knowledge of environmental statistics. Nat.
Neurosci. 14, 926–932 (2011).

13. Albright, T. D. Centrifugal directional bias in the middle temporal visual area
(MT) of the macaque. Vis. Neurosci. 2, 177–188 (1989).

14. Gerardin, P., Kourtzi, Z. & Mamassian, P. Prior knowledge of illumination for
3D perception in the human brain. Proc. Natl Acad. Sci. USA 107,
16309–16314 (2010).

15. Sun, J. & Perona, P. Where is the sun? Nat. Neurosci. 1, 183–184 (1998).
16. Ramachandran, V. S. Perception of shape from shading. Nature 331, 163–166

(1988).
17. Teufel, C. & Fletcher, P. C. Forms of prediction in the nervous system. Nat.

Rev. Neurosci. 21, 231–242 (2020).
18. Kover, H. & Bao, S. Cortical plasticity as a mechanism for storing Bayesian

priors in sensory perception. PLoS ONE 5, e10497 (2010).
19. Li, B., Peterson, M. R. & Freeman, R. D. Oblique effect: a neural basis in the

visual cortex. J. Neurophysiol. 90, 204–217 (2003).
20. Cavanagh P. What’s up in top-down processing? In A. Gorea (ed.)

Representations of vision: Trends and tacit assumptions in vision research,
Cambridge University Press. 295–304 (1991).

21. Yuille, A. & Kersten, D. Vision as Bayesian inference: analysis by synthesis?
Trends Cogn. Sci. 10, 301–308 (2006).

22. Summerfield, C. et al. Predictive codes for forthcoming perception in the
frontal cortex. Science 314, 1311–1314 (2006).

23. Rahnev, D., Lau, H. & de Lange, F. P. Prior expectation modulates the
interaction between sensory and prefrontal regions in the human brain. J.
Neurosci. 31, 10741–10748 (2011).

24. Eger, E., Henson, R. N., Driver, J. & Dolan, R. J. Mechanisms of top-down
facilitation in l expception of visual objects studied by FMRI. Cereb. Cortex 17,
2123–2133 (2007).

25. Kornmeier, J., Worner, R., Riedel, A., Tebartz & van Elst, L. A different view
on the Necker cube-Differences in multistable perception dynamics between
Asperger and non-Asperger observers. PLoS ONE 12, e0189197 (2017).

26. Mamassian, P. & Landy, M. S. Observer biases in the 3D interpretation of line
drawings. Vis. Res. 38, 2817–2832 (1998).

27. Troje, N. F. & McAdam, M. The viewing-from-above bias and the silhouette
illusion. Iperception 1, 143–148 (2010).

28. Clark, A. Whatever next? Predictive brains, situated agents, and the future of
cognitive science. Behav. Brain Sci. 36, 181–204 (2013).

29. Hohwy, J., Roepstorff, A. & Friston, K. Predictive coding explains binocular
rivalry: an epistemological review. Cognition 108, 687–701 (2008).

30. Keller, G. B. & Mrsic-Flogel, T. D. Predictive processing: a canonical cortical
computation. Neuron 100, 424–435 (2018).

31. Leopold, D. A. & Logothetis, N. K. Multistable phenomena: changing views in
perception. Trends Cogn. Sci. 3, 254–264 (1999).

32. Brascamp, J., Sterzer, P., Blake, R. & Knapen, T. Multistable perception and
the role of the frontoparietal cortex in perceptual inference. Annu. Rev.
Psychol. 69, 77–103 (2018).

33. Wang, M., Arteaga, D. & He, B. J. Brain mechanisms for simple perception
and bistable perception. Proc. Natl Acad. Sci. USA 110, E3340–E3349 (2013).

34. Watanabe, T., Masuda, N., Megumi, F., Kanai, R. & Rees, G. Energy landscape
and dynamics of brain activity during human bistable perception. Nat.
Commun. 5, 4765 (2014).

35. Weilnhammer, V. A., Ludwig, K., Hesselmann, G. & Sterzer, P. Frontoparietal
cortex mediates perceptual transitions in bistable perception. J. Neurosci. 33,
16009–16015 (2013).

36. Rassi, E., Wutz, A., Muller-Voggel, N. & Weisz, N. Prestimulus feedback
connectivity biases the content of visual experiences. Proc. Natl Acad. Sci. USA
116, 16056–16061 (2019).

37. de Jong, M. C. et al. Intracranial recordings reveal unique shape and timing of
responses in human visual cortex during illusory visual events. Curr. Biol. 30,
3089–3100. e3084 (2020).

38. de Jong, M. C. et al. Intracranial recordings of occipital cortex responses to
illusory visual events. J. Neurosci. 36, 6297–6311 (2016).

39. Borji, A. & Tanner, J. Reconciling saliency and object center-bias hypotheses
in explaining free-viewing fixations. IEEE Trans. Neural Netw. Learn. Syst. 27,
1214–1226 (2015).

40. Feldman, J. The simplicity principle in perception and cognition. Wiley
Interdiscip. Rev. Cogn. Sci. 7, 330–340 (2016).

41. McGraw, K. O. & Wong, S. P. Forming inferences about some intraclass
correlation coefficients. Psychological Methods 1, 30 (1996).

42. Genç, E., Bergmann, J., Singer, W. & Kohler, A. Interhemispheric connections
shape subjective experience of bistable motion. Curr. Biol. 21, 1494–1499
(2011).

43. Kanai, R. & Rees, G. The structural basis of inter-individual differences in
human behaviour and cognition. Nat. Rev. Neurosci. 12, 231–242
(2011).

44. Wallisch, P. Illumination assumptions account for individual differences in
the perceptual interpretation of a profoundly ambiguous stimulus in the color
domain: “The dress”. J. Vis. 17, 5–5 (2017).

45. Britz, J., Landis, T. & Michel, C. M. Right parietal brain activity precedes
perceptual alternation of bistable stimuli. Cereb. Cortex 19, 55–65 (2009).

46. Pitts, M. A., Martinez, A., Stalmaster, C., Nerger, J. L. & Hillyard, S. A. Neural
generators of ERPs linked with Necker cube reversals. Psychophysiology 46,
694–702 (2009).

47. Canales-Johnson, A. et al. Dissociable neural information dynamics of
perceptual integration and differentiation during bistable perception. Cereb.
Cortex 30, 4563–4580 (2020).

48. Manning, J. R., Jacobs, J., Fried, I. & Kahana, M. J. Broadband shifts in local
field potential power spectra are correlated with single-neuron spiking in
humans. J. Neurosci. 29, 13613–13620 (2009).

49. Ray, S. & Maunsell, J. H. Different origins of gamma rhythm and high-gamma
activity in macaque visual cortex. PLoS Biol. 9, e1000610 (2011).

50. Crone, N. E., Korzeniewska, A. & Franaszczuk, P. J. Cortical gamma
responses: searching high and low. Int. J. Psychophysiol. 79, 9–15
(2011).

51. Dosenbach, N. U., Fair, D. A., Cohen, A. L., Schlaggar, B. L. & Petersen, S. E. A
dual-networks architecture of top-down control. Trends Cogn. Sci. 12, 99–105
(2008).

52. Tong, F., Nakayama, K., Vaughan, J. T. & Kanwisher, N. Binocular rivalry and
visual awareness in human extrastriate cortex. Neuron 21, 753–759 (1998).

53. Bressler, S. L., Seth, A. K., Barrett, A. B. & Barnett, L. Granger causality
analysis in neuroscience and neuroimaging. J. Neurosci. 35, 3293–3297
(2015).

54. Seth, A. K., Barrett, A. B. & Barnett, L. Granger causality analysis in
neuroscience and neuroimaging. J. Neurosci. 35, 3293–3297 (2015).

55. van Kerkoerle, T. et al. Alpha and gamma oscillations characterize feedback
and feedforward processing in monkey visual cortex. Proc. Natl Acad. Sci. USA
111, 14332–14341 (2014).

56. Bastos, A. M. et al. Visual areas exert feedforward and feeperck influences
through distinct frequency channels. Neuron 85, 390–401 (2015).

57. Chao, Z. C., Takaura, K., Wang, L., Fujii, N. & Dehaene, S. Large-scale cortical
networks for hierarchical prediction and prediction error in the primate brain.
Neuron 100, 1252–1266.e1253 (2018).

58. Milner, A. D. & Goodale, M. A. Two visual systems re-viewed.
Neuropsychologia 46, 774–785 (2008).

59. Barnett, L. & Seth, A. K. The MVGC multivariate Granger causality toolbox: a
new approach to Granger-causal inference. J. Neurosci. Methods 223, 50–68
(2014).

60. Moreno-Bote, R., Rinzel, J. & Rubin, N. Noise-induced alternations in an
attractor network model of perceptual bistability. J. Neurophysiol. 98,
1125–1139 (2007).

61. Huguet, G., Rinzel, J. & Hupe, J. M. Noise and adaptation in multistable
perception: noise drives when to switch, adaptation determines percept choice.
J. Vis. 14, 19 (2014).

62. Wilson, H. R. Computational evidence for a rivalry hierarchy in vision. Proc.
Natl Acad. Sci. USA 100, 14499–14503 (2003).

63. Weilnhammer, V., Stuke, H., Hesselmann, G., Sterzer, P. & Schmack, K. A
predictive coding account of bistable perception - a model-based fMRI study.
PLoS Comput. Biol. 13, e1005536 (2017).

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-26544-w

14 NATURE COMMUNICATIONS |         (2021) 12:6288 | https://doi.org/10.1038/s41467-021-26544-w |www.nature.com/naturecommunications

www.nature.com/naturecommunications


64. Spratling, M. W. Predictive coding as a model of biased competition in visual
attention. Vis. Res. 48, 1391–1408 (2008).

65. Tsuchiya, N., Wilke, M., Frassle, S. & Lamme, V. A. No-report paradigms:
extracting the true neural correlates of consciousness. Trends Cogn. Sci. 19,
757–770 (2015).

66. Long, G. M. & Toppino, T. C. Enduring interest in perceptual ambiguity:
alternating views of reversible figures. Psychol. Bull. 130, 748–768 (2004).

67. Meng, M. & Tong, F. Can attention selectively bias bistable perception?
Differences between binocular rivalry and ambiguous figures. J. Vis. 4,
539–551 (2004).

68. Harrison, S. J., Backus, B. T. & Jain, A. Disambiguation of Necker cube
rotation by monocular and binocular depth cues: relative effectiveness for
establishing long-term bias. Vis. Res. 51, 978–986 (2011).

69. Murphy A., Leopold D. & Welchman A. Perceptual memory drives learning of
retinotopic biases for bistable stimuli. Front. Psychol. 5, 60 (2014).

70. Pastukhov, A. & Braun, J. Cumulative history quantifies the role of neural
adaptation in multistable perception. J. Vis. 11, 12 (2011).

71. Ralph, M. A., Jefferies, E., Patterson, K. & Rogers, T. T. The neural and
computational bases of semantic cognition. Nat. Rev. Neurosci. 18, 42–55
(2017).

72. Baror, S. & He, B. J. Spontaneous perception: a framework for task-free, self-
paced perception. Neurosci. Conscious. 2021, niab016 (2021).

73. Binder, J. R., Desai, R. H., Graves, W. W. & Conant, L. L. Where is the
semantic system? A critical review and meta-analysis of 120 functional
neuroimaging studies. Cereb. Cortex 19, 2767–2796 (2009).

74. Wallisch, P. Illumination assumptions account for individual differences in
the perceptual interpretation of a profoundly ambiguous stimulus in the color
domain: ‘The dress’. J. Vis. 17, 5 (2017).

75. Adams, W. J., Graf, E. W. & Ernst, M. O. Experience can change the ‘light-
from-above’ prior. Nat. Neurosci. 7, 1057–1058 (2004).

76. Robertson, C. E., Kravitz, D. J., Freyberg, J., Baron-Cohen, S. & Baker, C. I.
Slower rate of binocular rivalry in autism. J. Neurosci. 33, 16983–16991 (2013).

77. Robertson, C. E., Ratai, E. M. & Kanwisher, N. Reduced GABAergic action in
the autistic brain. Curr. Biol. 26, 80–85 (2016).

78. Dakin, S. & Frith, U. Vagaries of visual perception in autism. Neuron 48,
497–507 (2005).

79. Behrmann, M., Thomas, C. & Humphreys, K. Seeing it differently: visual
processing in autism. Trends Cogn. Sci. 10, 258–264 (2006).

80. Rust, N. C. & Stocker, A. A. Ambiguity and invariance: two fundamental
challenges for visual processing. Curr. Opin. Neurobiol. 20, 382–388 (2010).

81. Olshausen, B. A. & Field, D. J. How close are we to understanding v1? Neural
Comput. 17, 1665–1699 (2005).

82. Fletcher, P. C. & Frith, C. D. Perceiving is believing: a Bayesian approach to
explaining the positive symptoms of schizophrenia. Nat. Rev. Neurosci. 10,
48–58 (2009).

83. Friston, K. J., Stephan, K. E., Montague, R. & Dolan, R. J. Computational
psychiatry: the brain as a phantastic organ. Lancet Psychiatry 1, 148–158 (2014).

84. Yang, A. I. et al. Localization of dense intracranial electrode arrays using
magnetic resonance imaging. Neuroimage 63, 157–165 (2012).

85. Fan, L. et al. The human brainnetome atlas: a new brain atlas based on
connectional architecture. Cereb. Cortex 26, 3508–3526 (2016).

86. Hesselmann, G., Kell, C. A., Eger, E. & Kleinschmidt, A. Spontaneous local
variations in ongoing neural activity bias perceptual decisions. Proc. Natl
Acad. Sci. USA 105, 10984–10989 (2008).

87. Oostenveld, R., Fries, P., Maris, E. & Schoffelen, J. M. FieldTrip: open source
software for advanced analysis of MEG, EEG, and invasive
electrophysiological data. Comput. Intell. Neurosci. 2011, 156869 (2011).

88. Tal, I. & Abeles, M. Cleaning MEG artifacts using external cues. J. Neurosci.
Methods 217, 31–38 (2013).

Acknowledgements
This work was supported by National Science Foundation CAREER award (BCS-
1753218), Klingenstein-Simons Neuroscience Fellowship and Irma T. Hirschl Career
Scientist Award (to BJH). M.Z.’s research in the He lab was supported by a Simons
Foundation Autism Research Initiative Undergraduate Summer Research Award and the
NYU training program in computational neuroscience (NIH R90DA043849). We thank
Thomas Baumgarten for recording the patient with the high-density grid, Xiuyuan
(Hugh) Wang for his work on electrode reconstruction, Preet Minhas, Margaret Hof-
stadter, Beenish Mahmood, and Daniel Maksumov for patient coordination, and Jan
Brascamp for sharing MNI coordinates of ROIs.

Author contributions
R.H. and B.J.H. designed the ECoG experiment and the behavioral task. R.H. collected
the ECoG data. R.H and B.J.H. designed the online experiment; R.H. collected and
analyzed the data. M.Z. collected the longitudinal behavioral data. R.H., M.Z., and B.J.H
implemented the computational model. A.F., L.M., and S.D., coordinated research efforts
and ECoG data collection. W.K.D., D.F., P.C.D., and O.D. provided clinical care and
facilitated the research. R.H. and B.J.H. analyzed the data and wrote the manuscript.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version contains supplementary material
available at https://doi.org/10.1038/s41467-021-26544-w.

Correspondence and requests for materials should be addressed to Biyu J. He.

Peer review information Nature Communications thanks the anonymous reviewer(s) for
their contribution to the peer review of this work.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this license, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2021

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-26544-w ARTICLE

NATURE COMMUNICATIONS |         (2021) 12:6288 | https://doi.org/10.1038/s41467-021-26544-w |www.nature.com/naturecommunications 15

https://doi.org/10.1038/s41467-021-26544-w
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
www.nature.com/naturecommunications
www.nature.com/naturecommunications

	Long-term priors influence visual perception through recruitment of long-range feedback
	Results
	Perceptual bias during bistable perception of ambiguous images
	Neural activity involved in perceptual maintenance and perceptual switching is spatially separate but shared between images
	A backbone of feedforward activity flow during bistable visual perception
	Increased feedback influences during the preferred percept
	A hierarchical predictive coding model of bistable perception

	Discussion
	Methods
	Participants
	iEEG recordings
	Clinical (macroelectrode) recording equipment
	Experimental setup
	Task paradigm
	Behavioral analysis
	ECoG data pre-processing
	Heartbeat artifact removal
	Switch and maintain analysis
	Assessing information flow during perceptual maintenance with granger causality
	Feedforward-feedback asymmetry granger causality analysis
	Changes in information-flow patterns with perceptual content and perceptual bias
	Computational model

	Reporting summary
	Data availability
	Code availability
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information




