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Forming valid predictions about the environment is crucial to survival. However, whether humans are able to form valid predictions
about natural stimuli based on their temporal statistical regularities remains unknown. Here, we presented subjects with tone sequences
with pitch fluctuations that, over time, capture long-range temporal dependence structures prevalent in natural stimuli. We found that
subjects were able to exploit such naturalistic statistical regularities to make valid predictions about upcoming items in a sequence.
Magnetoencephalography (MEG) recordings revealed that slow, arrhythmic cortical dynamics tracked the evolving pitch sequence over
time such that neural activity at a given moment was influenced by the pitch of up to seven previous tones. Importantly, such history
integration contained in neural activity predicted the expected pitch of the upcoming tone, providing a concrete computational mecha-
nism for prediction. These results establish humans’ ability to make valid predictions based on temporal regularities inherent in natu-
ralistic stimuli and further reveal the neural mechanisms underlying such predictive computation.
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Introduction
In real-life environments, prior sensory information across mul-
tiple time scales continually influences information processing in
the present. To date, the relationship between neural integration

of information over time and predictive computations remains
mysterious (Hasson et al., 2015). The importance of this question
is underscored by the fact that forming valid predictions about
the features (Summerfield and de Lange, 2014) and timing
(Cravo et al., 2011; Jepma et al., 2012) of upcoming stimuli in the
environment is crucial for survival. Predictions about stimulus
features can be generated through a variety of mechanisms, in-
cluding associative learning (Schlack and Albright, 2007), con-
textual influences (Bar, 2004), imagination (Schacter et al., 2007),
task cues (Wyart et al., 2012; de Lange et al., 2013), and extrapo-
lation from statistical regularities in sensory input (Saffran et al.,
1996; Alink et al., 2010; Chalk et al., 2010). Because statistical
regularities are ubiquitous in natural stimuli (Dong and Atick,
1995; Summerfield and de Lange, 2014), extrapolating from sta-
tistical regularities in sensory input should provide a fundamen-
tal strategy for forming predictions in natural environments.
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Significance Statement

A fundamental question in neuroscience is how the brain predicts upcoming events in the environment. To date, this question has
primarily been addressed in experiments using relatively simple stimulus sequences. Here, we studied predictive processing in the
human brain using auditory tone sequences that exhibit temporal statistical regularities similar to those found in natural stimuli.
We observed that humans are able to form valid predictions based on such complex temporal statistical regularities. We further
show that neural response to a given tone in the sequence reflects integration over the preceding tone sequence and that this
history dependence forms the foundation for prediction. These findings deepen our understanding of how humans form predic-
tions in an ecologically valid environment.
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Previous studies investigating predictions based on statistical
regularities have largely used relatively simple stimuli such as the
oddball paradigm, in which a novel stimulus is embedded within
a sequence of repeated stimuli (Yaron et al., 2012); the local–
global paradigm, in which a sequence including two values con-
tains both local and global regularities (Bekinschtein et al., 2009);
and repeated presentations of a fixed sequence of stimuli (Erick-
son and Desimone, 1999; Meyer and Olson, 2011; Gavornik and
Bear, 2014). Although such stimuli allow for tight experimental
control, they induce the formation of predictions by repeated
presentations of items or sequences of items. In contrast, tempo-
rally varying stimuli encountered in the natural environment
have rich statistical structures that allow for more complex forms
of predictions. At present, whether humans can form valid pre-
dictions based on temporal statistical regularities inherent in nat-
ural stimuli remains unknown.

In particular, one pervasive statistical feature of natural stim-
uli is that they exhibit power spectra following a P � 1/f � pattern
in spatial (Tolhurst et al., 1992) and temporal frequency do-
mains, where � is an exponent commonly ranging between 0 and
2. In the temporal domain, a 1/f � pattern is observed in the loud-
ness and pitch fluctuations of music, speech, and ambient noise
in urban and rural settings (Voss and Clarke, 1975; De Coensel et
al., 2003) and in the rhythms of music (Levitin et al., 2012).
Previous work has shown that human perception and neural ac-
tivity are sensitive to the scaling parameter � of dynamic auditory
stimuli such as tone sequences featuring 1/f � fluctuations in pitch
(Schmuckler and Gilden, 1993; Patel and Balaban, 2000; Garcia-
Lazaro et al., 2006; Lin et al., 2016). Therefore, 1/f � statistics are
prevalent in natural stimuli, and human perception is sensitive to
such statistics. Because a 1/f � type temporal power spectrum in-
dicates temporal dependence and predictability (Eke et al., 2002;
He, 2014), these observations raise the intriguing question of
whether humans are able to make valid predictions about up-
coming items in such sequences.

Here, we investigate these open questions using a novel exper-
imental paradigm that allows us to probe, for the first time, the
ability of human subjects to exploit the temporal statistical regu-
larities found in natural stimuli to predict upcoming stimulus
features. We created tone sequences with pitch that fluctuated
over time following a 1/f � pattern where � ranged from 0 (no
temporal dependence, “white noise”) to 2 (strong temporal de-
pendence, “random walk”). The expected pitch of a given tone in
the sequence can be expressed as a function of the preceding tone
pitches. These stimuli are thus well controlled while also captur-
ing the complex statistical regularities exhibited by auditory
stimuli in natural environments. We therefore refer to these tone
sequences as “naturalistic” rather than “natural” to highlight that,
although the elements of the sequences are man-made pure
tones, the dynamics of tone pitch fluctuation reflect the statistics
of 1/f � temporal dependence found in natural stimuli. Using a
behavioral task based on these stimuli and MEG recordings in
humans, we established human subjects’ ability to make valid
predictions about upcoming stimulus features based on natural-
istic temporal statistical regularities and further uncovered the
underlying neural mechanisms as implemented in history-
dependent neural processing of incoming information.

Materials and Methods
Stimuli creation. We created auditory tone sequences with pitch fluctua-
tions that had five levels of temporal dependence strength �, ranging
from � � 0 (no temporal dependence) to � � 2 (strong temporal depen-
dence). Sequences with � � 1 (� � 0 and 0.5) were fractional Gaussian

noise (fGn), whereas sequences with � � 1 (� � 1.01, 1.5, and 2) were
fractional Brownian motion (fBm). fBm sequences are nonstationary,
self-similar sequences with increments that are stationary fGn sequences
and the transition from fGn to fBm sequences occurs at � � 1 (Mandel-
brot and Van Ness, 1968; Eke et al., 2002). We used a circulant embed-
ding algorithm (Helgason et al., 2011) to create six unique 33-element
long series for each level of �, as follows:

x�, i � �x1, x2, . . . , x33�, � � {0, 0.5, 1.01, 1.5, 2}, 1 � i � 6

where each element xj of x�,i is taken to represent the pitch of the j th tone
in the sequence. Each x�,i series was translated and scaled such that its
elements ranged from log(220) to log(880). This range of pitch values
was chosen to span the iso-loudness region of human hearing (Robinson
and Dadson, 1956). To investigate the potential effect of overall pitch
variability on judgments of sequence statistics, we scaled half of the se-
quences such that the SD of its corresponding fGn was 70% of its original
value (each fBm series is associated with a fGn series of the same Hurst
exponent with a power–law exponent � that differs by 2; Eke et al., 2002).
This resulted in sequences that spanned a smaller range (green traces in
Figure 1B) than the nonscaled sequences (magenta traces). Next, the
series were discretized such that each element took on one of 25 values
evenly spaced on the log scale with semitone distance. We refer to these
discretized series as p�,i. Each p�,i thus represents a series of tone pitches
with pitch fluctuation that exhibits temporal dependence prescribed by
�. To disentangle predictive processing from instantaneous stimulus
processing, all sequences converged onto a pitch value of 440 Hz for the
33 rd and penultimate tone. The 34 th and final tone of each sequence
varied across trials and was selected from one of six possible values of
pitch that were 4, 8, or 12 semitone steps above or below 440 Hz (black
dots in Fig. 1B). Each unique sequence was presented for a total of 12
times and each of the six final tone pitch values was used twice for each
unique sequence in randomized order.

The sound wave for each sequence was constructed according to the
following:

y(t)�, i, j � A cos(2� exp(p�, i, j) t/SR � �j),

where t denotes sample number, i denotes sequence number, j denotes
tone number within sequence i, A (amplitude) � 1, and SR (sampling
rate) � 44,100 Hz. The 300 ms duration of each tone was chosen for ease
of listening, in accordance with prior studies (Patel and Balaban, 2000;
Lin et al., 2016). Because each sequence contained 34 tones, it had a
total duration of 10.2 s. Cosine waves for each tone j were concate-
nated such that there was no silence period between consecutive
tones. To prevent clicking noises from occurring between tones,
�j is computed to ensure that y�,i,j is a smooth and differentiable
function across adjacent j values. Audio files of sequence examples
can be downloaded from https://med.nyu.edu/helab/sites/default/
files/helab/Maniscalco_etal_stim_wav_files_and_figs.zip.

These auditory tone sequences were presented using the PsychPortAudio
function of the Psychophysics Toolbox (Brainard, 1997) in MATLAB
(The MathWorks). The audio was delivered through specialized ear
tubes that were MEG compatible. The Etymotic ER-3 Insert Head-
phones, which has a frequency response that is flat to 5 kHz, was used.
The plastic tubing from the transducer to the earpiece had a speed-of-
sound delay of �10 ms, which was corrected in the MEG data analyses.

Calculation of p34
* . Let 	xn, n � 1, . . . , N} be a series of data samples

drawn from a stationary zero-mean random process, with covariance
function rx. Linear prediction of order K, x̂n, for sample n, from past
samples 	xn
1, xn
2, . . . , xn
K� is written as follows:

x̂n � �
k�1

K

ak xn
k,

where the vector a � 	a1, a2, . . . , aK� is to be chosen (or estimated) so as
to minimize the average (squared) prediction error as follows:

â
�

� min
a
�

�� xn
x̂n

2
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Linear algebra leads to an explicit theoretical solution for â
�

(Scharf, 1991):

â
�

theory � R
�

K

1r

�
x

where rx is the covariance sequence of process x and R
�

K denotes the K � K

square matrix, with entry � R
�

K
p,p� � rx ��p � p��
 for p,p� � 	1, . . . ,K�2.

If x is an fGn sequence (
1 � � � 1), then covariance rx can be
computed as a function of its Hurst exponent H and variance 	 2 (Eke et
al., 2002) as follows:

rx�k
 �
	2

2
��k � 1�2H � 2 � k � 2H � �k � 1�2H


where H � (� � 1)/2. We set K � 33 to compute the expected value of the
final tone pitch based on the pitch values of all 33 preceding tones.

In summary, the calculation of p34
* for the (zero-meaned) � � 0 and

� � 0.5 sequences can be written as follows:

p34���1
* � �

k�0

32

ak�1,� p33
k (1)

where ak�1, � are the optimal prediction weights for an fGn sequence
with scaling parameter � and p33-k are the pitch of the preceding
tones. Expected value was calculated for each sequence using zero-
meaned pitch series. Because the mean pitch value was log(440), we
added log(440) to the calculated expected value (Eq. 1) to yield the
final value for p34

* used in analyses. For � � 0 sequences, coefficients
ak�1, 0 � 0, so the expected value of the upcoming item is equal to the
sequence mean, resulting in p34

* � log(440) for all � � 0 sequences.
fBm sequences (1 � � � 3) are cumulative sums of fGn sequences

with the same Hurst exponent H and are nonstationary. The preced-
ing methodology for computing expected value only holds for fGn
sequences and so cannot be applied to fBm sequences. However, the
increments of an fBm sequence with scaling parameter � constitute an
fGn sequences with scaling parameter � – 2 (Eke et al., 2002). There-
fore, to calculate the expected value for fBm sequences, we first com-
puted the difference between successive elements in the fBm
sequence, which yielded an fGn sequence (with expected mean � 0).
We then computed the expected value for the upcoming item in this
fGn sequence, i.e., the expected increment in pitch for the original
fBm series, as follows:

inc34���1
* � �

k�0

31

ak�1,�
2� p33
k � p33
k
1


where ak�1, �-2 are the optimal prediction weights for an fGn sequence
with scaling parameter � 
 2 and p33-k are the pitch of the preceding
tones. Finally, we calculated the expected pitch of the 34 th tone in the
fBm sequences (� � 1.01, 1.5, and 2) as the pitch of the 33 rd tone (which
is always 440 Hz) plus the expected increment in pitch, as follows:

p34���1
* � p33 � inc34���1

*

To facilitate comparison with equation (1), p34
* for fBm sequences can be

written as a weighted sum of preceding pitch values as follows:

p34���1
* � p33 � �a1,�
2p33 � ��

k�1

31

�ak�1,�
2 � ak,�
2
p33
k�� a32,�
2p1�
(2)

For a � � 2 sequence, the increments form an fGn sequence with � � 0,
so the expected increment inc34

* � 0, entailing that p34
* � p33 � log(440).

Herein, we use the term “optimal prediction weights” (sometimes
shortened to “prediction weights”) to refer to the weights placed on the

pitch sequence history p33-k (where k � [0 32]) to compute p34
* for fGn

(Eq. 1) and fBm (Eq. 2) sequences.
Experimental design and statistical analysis. Each trial began with pre-

sentation of a fixation point in the middle of the screen (Fig. 1A). Subjects
were instructed to fixate on the fixation point during presentation of the
auditory sequence to minimize eye movements. Likelihood ratings and
trend strength ratings were entered using two separate button boxes for
the left and right hand, respectively. Subjects were instructed to disregard
the final tone in their judgment of trend strength because the final tone
did not follow the temporal dependence statistics of preceding tones.
Higher trend strength was explained to the subjects as the tendency for a
trend of high- or low-pitch values to persist over longer periods of time,
which captured the concept of temporal dependence in the time series.
Performance feedback about the trend strength rating was presented
visually for 2 s after entry of both behavioral responses. The feedback
indicated what trend strength rating had been entered by the subject,
what the true trend strength of the sequence was, and whether the sub-
ject’s trend strength rating was correct, close to correct (off by one level),
or incorrect (off by two or more levels).

Trials were split into 12 blocks of 30 trials each and subjects received a
self-terminated period of rest after each block. Between blocks, the head
position of the subject was measured with respect to the MEG sensor array
using coils placed on the left and right preauricular points and the nasion and
the subject self-corrected their head position to the same position recorded at
the start of the first block using a custom visual-feedback program written by
T.H. inspired by previous work (Stolk et al., 2013) to minimize head dis-
placement across the experiment. Details on statistical analyses can be found
in the following sections and in the Results.

Subjects. The experiment was approved by the Institutional Review
Board of the National Institute of Neurological Disorders and Stroke
(protocol #14-N-0002). All subjects were right-handed and neurologi-
cally healthy with normal hearing and provided written informed con-
sent. Twenty subjects between 21 and 34 years old (mean age 24.1; 15
females) participated in an initial �2 h long behavioral session to famil-
iarize themselves with the task. Overall, the initial group of 20 subjects
was able to discriminate sequence � (t test on z-transform of Spearman
correlation coefficients between sequence � and trend strength rating,
t(19) � 7.8, p � 0.001) and to make valid predictions ( p34 � p34

* interac-
tion as in the analysis of Fig. 2B, F(10,190) � 17.2, p � 0.001; for details, see
Results, subjects can make valid predictions about upcoming items based
on stimulus sequence history).

We invited subjects exhibiting adequate behavioral performance
(Spearman correlation between sequence � and trend strength rating
�0.2 and full usage of the rating scales for both behavioral responses) to
perform the task in the MEG scanner. Fourteen subjects were recruited
for the MEG portion of the study (lasting �3 h including setup time).
Three subjects were excluded from analyses due to excessive MEG arti-
facts from dental implants or eye or head movements (age range for the
remaining subjects: 21–34; mean age: 24.1; 7 females). Behavioral results
reported in Figure 2 are from the MEG session and included the same
subjects who contributed MEG data.

Data acquisition and preprocessing. Experiments were conducted in a
whole-head 275-channel CTF MEG scanner. MEG data were collected
with a sampling rate of 600 Hz and an anti-aliasing filter at �150 Hz.
Analyses were performed on 271 sensors after excluding four malfunc-
tioning sensors. The analyses were conducted using the Fieldtrip package
(Oostenveld et al., 2011) and code custom written in MATLAB. MEG
data from each block were demeaned and detrended. To best investigate
low-frequency MEG activity, we did not apply a high-pass filter; an ear-
lier study from our laboratory on the same MEG scanner using similar
stimuli and much longer trial-length (180 s), as well as resting-state
recordings, had demonstrated excellent data quality down to �0.005 Hz
(Lin et al., 2016). Powerline noise was removed offline by applying a
fourth-order Butterworth band-stop filter in frequency ranges 58 – 62 Hz
and 118 –122 Hz. Independent component analysis (ICA) was used to
remove artifacts related to eye blinks, eye movements, heartbeat, breath-
ing, and slow movement drift.

Phase dissimilarity. We conducted this analysis closely following the
methods used in (Luo and Poeppel, 2007). For every trial, sensor, and
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subject, we performed a fast Fourier transform on the activity during the
9.9 s presentation of the first 33 tones of the tone sequence using a 6 s
length sliding Hanning window that incremented in 100 ms steps. For
each time point and frequency bin at each sensor, across-trial phase
coherence was computed as follows:

Cphasef,t � ��n�1

N

cos
 f,t,n

N
	

2

� ��n�1

N

sin
 f,t,n

N
	

2

where 
f,t,n denotes phase at frequency f, time t, and trial n. Phase coher-
ence ranges from 0 to 1, where 0 indicates random phase across trials and
1 indicates identical phase across trials.

We next defined “identical” stimulus sets as the 12 trials in which the
same initial 33-tone sequence was presented and “similar” stimulus sets
as trials in which sequences with the same � and 	 were presented. To
match the number of trials in the two conditions, for “similar” stimulus
sets, we randomly selected 12 trials from a total of 36 trials for each level
of � and 	. We then computed phase dissimilarity at each frequency bin
as the difference in mean phase coherence over time between identical
and similar stimulus sets as follows:

phasedissimilarityf �

�
t�1

T

Cphasef,t,identical

T
�

�
t�1

T

Cphasef,t,similar

T
.

The following analyses involved performing regressions on MEG activity
time locked to the onset of tones. For these analyses, we extracted MEG
activity using 50-ms-length sliding windows, which resulted in six win-
dows during the presentation of each tone. For analyses using baseline-
corrected MEG activity, because there was no period of silence before
each tone (aside from the first tone in the sequence), we performed
baseline correction by computing the mean MEG activity in the first 20
ms after tone onset and subtracting it from all time points during the
presentation of that tone.

History tracking analysis. For every tone i in the second half of the tone
sequence (16 � i � 32) of every trial n, we extracted a list of the k�
preceding tone pitch values: pi,n, pi
1,n, . . . , pi
k�,n. (Tone 33 was omit-
ted from the analysis because it always had the same pitch of 440 Hz and
tone 34 was omitted because its value was selected independently of the
prior sequence.) For each sensor s and trial n, we extracted MEG activity
after the onset of tone i using the sliding window approach described
earlier. We then regressed this value (call it Ms,w,i,n) onto the current tone
as well as the k� preceding tones as follows:

Ms,w,i,n � �0,s,w � �
k�0

k�k�

�k�1,s,w pi
k,n � �s,w,i,n (3)

where the �k�1,s,w terms describe how MEG activity at sensor s and time
window w depends upon the pitch of the tone presented k tones before
the current tone i.

Our aim was to determine what value of k� (ranging from 0 to 15)
provided the best fit to the MEG activity at each sensor and time window.
To assess this, we used a cross-validation procedure. For each subject, we
partitioned trials into a training set (odd-numbered trials) and a test set
(even-numbered trials). We performed 16 regression analyses on the
training set (one for each k� value ranging from 0 to 15). We then used the
regression coefficients from the training set to predict MEG activity in
the test set. The best value of k� for a given sensor and time window was
defined to be the one that minimized the sum of squared errors of the
predicted MEG activity in the test set. This procedure was repeated using
even-numbered trials as the training set and odd-numbered trials as the
test set. The final optimal k� assigned to each subject/sensor/time window
was the average k� derived from the two folds. See Figure 4A for a sche-
matic of the analysis. Last, k� values were averaged across subjects at each

sensor and time window. This analysis was performed both with and
without baseline correction.

To assess the statistical significance of the (across-subject) mean k�
values against the null hypothesis that mean k� � 0, we repeated the
cross-validation regression analyses described above using random per-
mutations of the tone sequences in the training set while leaving tone
sequences in the test set unshuffled. We randomly permuted the order of
the first 32 tones in the training set, with the exception that the value of
the current tone pitch i in each regression was kept the same as in the
original sequence. In other words, information about current tone pitch
was retained, whereas information about tone sequence history was de-
stroyed. We repeated this procedure 100 times each using odd and even
trials as the training set and found the value of k� yielding minimum error
on the test set, yielding 200 permutation samples of k�perm for each sub-
ject, sensor, and time window. Next, we repeatedly sampled (with re-
placement) from the k�perm values of each subject and calculated the
across-subject average 1000 times, yielding a distribution of mean k�
values at each sensor and time window under the null hypothesis that
mean k� � 0. We defined uncorrected p-values for each sensor and time
window as the proportion of samples in this null distribution that were
greater than or equal to the empirically observed mean k�. These p-values
were subsequently used to define clusters for the cluster correction anal-
ysis, in which the sum of k� across sensors in a cluster, k�sum, was used as
the cluster statistic (see “Cluster correction” section below).

Prediction effect. We investigated how MEG activity during the penul-
timate (33 rd) tone was modulated by the expected value of the final
(34 th) tone by performing the following regression model:

Ms,w,33,n � �0,s,w
* � �1,s,w

* p34,n
* � �s,w,33,n (4)

Because the penultimate tone always had a pitch of 440 Hz, it was not
necessary to include its pitch in the regression analysis. The �1,s,w

* coeffi-
cient describes how MEG activity at sensor s and time window w after the
penultimate tone onset depends on the expected pitch of the final tone,
p34

* . We submitted �1,s,w
* to a group-level analysis (one-sample t test

against zero), which was corrected for multiple comparisons across sen-
sors using a cluster-based permutation test described below.

Relating history-dependent MEG response with p34
* . For each subject,

sensor s, and time window w, we obtained coefficients �k�1,s,w (0 � k �
k�) from the previously conducted history tracking regression analysis on
non-baseline-corrected data using the optimal k� value for that subject,
sensor, and time window. Specifically, both the optimal k� and the coef-
ficients �k�1,s,w were averaged across the two folds for training and testing
and noninteger values of k� were rounded up to the nearest integer (in the
rare cases of optimal k� � 0, it was set to 1 to carry out the regression
analysis described below). Next, we partitioned MEG activity in response
to the penultimate tone at each sensor s, time window w, and trial n into
two components (see Fig. 6A): that which was predicted by the preceding
tone sequence and the residual. The former was computed as follows:

Ms,w,33,n
H � �0,s,w � �

k�0

k�k�

�k�1,s,wp33
k,n (5)

and the residual was computed as follows:

Ms,w,33,n
res � Ms,w,33,n

orig � Ms,w,33,n
H

where Ms,w,33,n
orig denotes the originally recorded MEG activity. Next, we

repeated the prediction effect regression analysis described above, but
now using Ms,w,33,n

H and Ms,w,33,n
res as the dependent variable as follows:

Ms,w,33,n
H � �0,s,w

H* � �1,s,w
H* p34,n

* � �s,w,33,n (6)

Ms,w,33,n
res � �0,s,w

res* � �1,s,w
res* p34,n

* � �s,w,33,n

Last, we quantified these observations by comparing the group-averaged
regression weights for p34

* obtained for M orig, M H, and M res.
Relationship between history tracking weights and optimal prediction

weights. Both M H (Eq. 5) and p34
* (Eqs. 1 and 2) are defined as weighted
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sums of the preceding pitch values. We can therefore gain further insight
into the relationship between history tracking and prediction by investi-
gating the relationship between the weights on the preceding pitch values
that determine M H and p34

* . Recall from Equation 6 that the regression of
MH onto p34

* is defined as follows: Ms,w,33,n
H � �0,s,w

H* � �1,s,w
H* p34,n

* � �s,w,33,n.
By substituting the definitions of M H and p34

* into the regression equation
and solving for the error term �, we can see how the regression error
depends on the relationship between the history tracking weights and
optimal prediction weights. For fGn sequences:

�s,w,33,n���1 � �
k�0

k�k�

��k�1,s,w � �1,s,w
H* ak�1,�
 p33
k,n � R��1 (7)

where

R��1 � ��0,s,w � �0,s,w
H* 
 � �1,s,w

H* �
k�k��1

k�32

ak�1,� p33
k

and for fBm sequences:

�s,w,33,n���1 � ��1,s,w � �1,s,w
H* a1,�
2
 p33,n

� �
k�1

k�k�

��k�1,s,w � �1,s,w
H* �ak�1,�
2 � ak,�
2

 p33
k,n � R��1 (8)

where

R��1 � ��0,s,w � �0,s,w
H* 
 � �1,s,w

H* � p33,n � ak��1,�
2p33
k�
1,n

� �
k�k��1

k�31

ak�1,�
2� p33
k,n � p33
k
1,n

.

Therefore, for fGn sequences, the regression error for M H onto p34
* par-

tially depends on the ��k�1,s,w � �1,s,w
H* ak�1,�
 terms; that is, the differ-

ence between the history tracking weights �k�1 and the scaled optimal
prediction weights ak�1,� (Eq. 1), where the scaling factor �1

H* is the
regression coefficient on p34

* . Similarly, for fBm sequences, regression error
partially depends on ��1,s,w � �1,s,w

H* a1,�
2
 and the ��k�1,s,w � �1,s,w
H*

�ak�1,�
2 � ak,�
2

 terms; that is, the difference between the history track-
ing weight and the scaled optimal prediction weight for the fBm sequence
(Eq. 2), where the scaling factor is �1

H*, the regression coefficient on
p34

* (Eq. 6).
In Figure 7A, we plot optimal prediction weights for different sequence

� values (see definition in Eqs. 1 and 2). From the above, we expect M H

to better predict p34
* the more closely history tracking weights resemble

the scaled optimal prediction weights.
To compare history dependence weights and scaled optimal predic-

tion weights, we focused on the significant sensor cluster showing a pre-
diction effect in the 200 –250 ms window (see Fig. 5B, reproduced in Fig.
7B, inset). Because optimal k� differs across subjects and sensors, first, we
averaged optimal k� across sensors in the significant cluster, training
folds, and subjects and rounded the result to the nearest integer for the
200 –250 ms and 250 –300 ms time windows separately (where significant
prediction effects are found). Call this rounded average value k�avg, w.
We found that k�avg, w � 5 and 4 for the 200 –250 ms and 250 –300 ms time
windows, respectively. For these time windows, we then analyzed history
dependence weights from the regressions where k� � k�avg, w for
all subjects and sensors to allow for across-subject and across-sensor
averaging. History dependence weights from both training folds were
averaged across sensors in the significant cluster and then averaged across
subjects. Next, we computed the scaled optimal prediction weights;
that is, the �1,s,w

H* ak�1,� terms in Equation 7 and the �1,s,w
H* a1,�
2 and

�1,s,w
H* �ak�1,�
2 � ak,�
2
 terms in Equation 8 to compare them to the

history dependence weights. To determine the �1,s,w
H* values, we computed

the across-subject, across-sensor average regression coefficient �1,s,w
H* for

the 200 –250 ms and 250 –300 ms time windows, respectively. We aver-

aged the scaled prediction weights computed for each level of sequence �
to arrive at a single set of scaled prediction weights for each time window
(dashed lines in Fig. 7B).

Inspection of the history dependence weights suggests that they feature
a pattern in which the pitch of the current and previous tone have large
but opposing effects on MEG activity during the current tone (Fig. 7B).
We investigated this effect further by calculating the across-sensor cor-
relations between the history dependence weights for the current and
previous pitches. In particular, if the current and previous pitch have
opposing effects on MEG activity, then we might expect that the weights
of the current and previous pitch on MEG activity are inversely corre-
lated across sensors. Therefore, using history dependence weights de-
fined by k�avg, w as described above, we investigated the across-sensor
lagged correlation between the first history dependence weight (k � 0;
i.e., regression weight for the current tone pitch) and subsequent history
dependence weights (k � 1; i.e., regression weights for earlier tones in the
sequence) for sensors in the 200 –250 ms prediction cluster. We com-
puted the correlation for all possible lags for each subject. Statistical
significance was assessed by computing the Fisher’s z transform of the
correlation coefficients and submitting the z-values to an across-subject,
one-sample t test against zero.

Cluster correction. To correct for multiple comparisons across sensors
in the analyses of MEG data, we used cluster-based permutation tests
(Maris and Oostenveld, 2007). For a given statistical test performed at
each sensor, clusters were defined as neighboring sensors exhibiting test
statistics of the same sign (e.g., positive t-values) and p � 0.05. The
neighbors for each sensor were defined using the CTF275_neighb.mat
template in Fieldtrip. For each such cluster, a summary cluster statistic
was defined as the sum of the absolute values of the test statistics across all
sensors in the cluster. We generated a null distribution of cluster statistics
by repeating the following procedure 1000 times: we randomly permuted
the data independently for each subject (described in detail below) and
used the same permutation across all sensors. Using the permuted data,
we again performed the statistical test for each sensor and extracted the
maximum cluster statistic across all clusters for the current permutation
iteration. This yielded a null distribution of 1000 cluster statistics. We
then used this null distribution to assign a p-value to clusters occurring in
the original, unshuffled data. We defined a measure of effect size for
clusters in the original data, dcluster, as follows:

dcluster �
�CScluster � mean�CSnull



std�CSnull

,

where CScluster is the cluster statistic for the cluster in the original data
and CSnull is the null distribution of cluster statistics derived from the
permutation procedure. dcluster thus measures the effect size of a cluster
statistic as the number of SDs by which it exceeds the mean of the null
distribution.

For ANOVA analyses (Fig. 3B), we permuted the data by randomly
shuffling the assignment of data cells to levels of the ANOVA factor under
investigation for each subject. We considered clusters in the original data
to be significant if their p-value was �0.05. For regression analyses (Fig.
5B), we used the following procedure. For a given regression coefficient j
at time window w, �j,w, we performed group-level analysis at every sensor
using a one-sample t test against 0 on �j,w across subjects. For each
subject, we permuted the data by randomly shuffling the across-trial
correspondence between the dependent variable (MEG activity) and in-
dependent variable (the term weighted by �j,w). We considered clusters
in the original data to be significant if their p-value was �0.025 (corre-
sponding to a two-tailed test at p � 0.05). For cluster correction of k�
(Figs. 4B, 5A), we defined clusters as spatially neighboring sensors exhib-
iting k� � 0 at p � 0.05 (uncorrected) and took the cluster statistic to be
the sum of the k� values of all sensors in a cluster. The permutation
procedure and the construction of the null distribution is described in
the section “History tracking analysis.” We considered clusters in the
original data to be significant if their p-value was �0.05.

Permutation-based cluster correction has the advantage of being a
nonparametric test and therefore not dependent upon distributional as-
sumptions about the data. Inspection of the marginal distributions of
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MEG recordings within single subjects, sensors, and trials confirmed that
MEG data was approximately normally distributed.

Replication of main findings in an independent sample. We performed a
follow-up experiment the primary purpose of which was to investigate
the influence of tone duration on the history tracking effect. Results for
this analysis will be reported in a future study. For the purposes of the
present study, we used this new dataset to investigate whether the pri-
mary behavioral and neural effects of interest would replicate in an inde-
pendent sample. For the new experiment, we generated a new set of tone
sequences using the same procedures described above with the following
exceptions. Tone sequences had scaling parameter � values limited to
0.5, 0.99, or 1.5 and the sequence 	 manipulation was omitted. Within
each sequence, tone duration was 150 ms, 300 ms, or 600 ms. Subjects
completed 324 trials in total (108 trials at each tone duration setting). The
behavioral task was identical to that of the main experiment.

In total, 26 subjects completed the experiment in the MEG (lasting �3
h including setup time), of which 7 were prescreened for behavioral
performance (as described for the main experiment), whereas the re-
maining 19 subjects performed the task for the first time in the MEG
scanner without any behavioral prescreening. Six out of 26 subjects were
excluded due to poor performance (not using the full range on rating
scales) or excessive MEG artifacts caused by head movements, yielding a
final group of 20 subjects for analyses (age range: 19 –34; mean age 25.0;
11 females).

Behavioral results reported are from the MEG session and included the
same 20 subjects who contributed MEG data. To investigate replication
of the primary effects of interest from the main experiment, we analyzed
data from the follow-up experiment using only trials with a 300 ms tone
duration (108 trials per subject). For these trials, we assessed the behav-
ioral prediction effect (cf. Figs. 8A, 2B), the neural prediction effect (cf.
Figs. 8B, 5B), and the relationship between the neural prediction and
history tracking effects (cf. Figs. 8C, 6D). All MEG preprocessing and
data analysis procedures were conducted as described above for the main
experiment.

Results
Task paradigm
On every trial, human subjects listened to a �10-s-long sequence
of 34 tones, each 300 ms in duration. The pitch (i.e., log of sound–
wave frequency) fluctuation of the first 33 tones in the sequence
followed different levels of temporal dependence as prescribed by
the parameter �, which measures the slope of the temporal power
spectrum of the pitch time series (following a P � 1/f � form).
Higher � (i.e., steeper power spectrum) corresponds to stronger
temporal dependence (Fig. 1B). Sequence � spanned five levels: 0,
0.5, 1, 1.5, and 2, with � � 0 corresponding to no temporal
dependence and � � 2 corresponding to strong temporal depen-

Figure 1. Task and stimuli. A, Trial structure. At the end of each trial, subjects judged the likelihood of the final tone, given the preceding tone sequence, on a scale of 1–5. Subjects then rated the
“trend strength” of the sequence on a scale of 0 – 4. Feedback on the accuracy of the trend strength rating was provided at the end of every trial. B, Full stimulus set. For each level of � (rows), we
generated 6 sequences, 3 of which ranged from 220 to 880 Hz (magenta traces, high 	) and 3 of which spanned a slightly smaller pitch range (green traces, low 	). For all sequences, the penultimate
(33 rd) tone was 440 Hz and the final (34 th) tone was drawn from one of 6 possible values 4, 8, or 12 semitone steps above or below 440 Hz (black dots). For ��0.5, 1, and 1.5, sequences were chosen
to have expected pitch for the final tone (p34

* ) spanning low (�440 Hz; red outline), medium (440 Hz; black outline), and high (�440 Hz; blue outline) ranges (indicated by x). For �� 0 and 2, the
expected final tone pitch was always 440 Hz. Each sequence was presented 12 times, with the 6 possible values for final tone pitch distributed evenly and randomly across the 12 presentations, for
a total of 360 trials.
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dence. Thirty unique sequences were used in the experiment. For
each level of �, three sequences spanned the full range of 220 –
880 Hz (Fig. 1B, magenta traces) and three sequences spanned a
slightly smaller range of pitch (average range � 276 –701 Hz; Fig.
1B, green traces, for details, see Materials and Methods). All se-
quences converged on a pitch of 440 Hz for the penultimate
(33 rd) tone to disentangle neural activity related to instantaneous
stimulus processing from that related to predictive processing
(see below).

Given knowledge about a sequence of N 
 1 values and the
sequence’s autocorrelation structure, it is possible to mathemat-
ically compute the expected value of the N th item in the sequence
(see Materials and Methods section “Calculation of p34

* ”). We
refer to the expected value of the final tone pitch as p34

* . For � �
0.5, 1, and 1.5, sequences varied in p34

* , exhibiting low (�440 Hz;
Fig. 1B, red outline), medium (440 Hz; black outline), or high
(�440 Hz; blue outline) expected values (indicated by the � at
the end of each sequence in Fig. 1B). Average values of p34

* for the
low and high categories were 388.5 Hz (range: [370, 415] Hz) and
504.2 Hz (range: [466, 554] Hz), respectively. For � � 0 se-
quences, because there is no temporal dependence, p34

* is simply
the mean value of the sequence and is 440 Hz. For � � 2 se-
quences, because they are random walks with no drift, p34

* is the
same as the pitch of the 33 rd tone and is also 440 Hz.

Each of the 30 unique sequences was presented 12 times (in
randomized order), for a total of 360 trials. For each unique
sequence, the actually presented 34 th (and final) tone pitch
varied across the 12 presentations and was randomly selected
from one of six values evenly spaced around the penultimate
tone pitch of 440 Hz (black dots in Fig. 1B). After listening to
the tone sequence on a given trial, subjects made two re-
sponses (Fig. 1A). First, they rated how probable the final tone
pitch was given the preceding tone sequence on a scale of 1–5.
Second, they indicated the “trend strength” of the first 33
tones of the sequence on a scale of 0 – 4, where each trend
strength rating corresponded to a level of �.

Subjects can make valid predictions about upcoming items
based on stimulus sequence history
We first replicated previous findings that subjects can form valid
judgment about sequence temporal dependence (Schmuckler
and Gilden, 1993; Lin et al., 2016). The across-trial correlation

between sequence � and trend strength rating was significant for
all subjects (all p � 0.0001, n � 360 trials for each subject; mean

 � 0.45). Figure 2A plots the group average of stimulus–re-
sponse matrix, with the distribution of responses concentrated
along the diagonal, indicating that subjects’ responses about
“trend strength” closely tracked sequence �.

Can subjects capitalize on the temporal dependence in a se-
quence to make valid predictions about upcoming items in the
sequence? To investigate this question, we performed the follow-
ing analysis. For each subject, we calculated the average likeli-
hood rating for the final tone pitch as a function of its expected
value (p34

* : low, medium, high), its actually presented value (p34)
and overall variability in the pitch sequence (	; magenta vs green
traces in Fig. 1B). We then submitted the likelihood ratings to a 6
(p34) � 3 (p34

* ) � 2 (	) repeated-measures ANOVA. There was a
main effect of p34 (F(5,50) � 20.2, p � 0.001, �p

2 � 0.67), reflecting
the overall inverse U shape of the function (Fig. 2B); as expected,
subjects rated final tone pitch to be less likely the more it deviated
from the penultimate tone pitch of 440 Hz. Crucially, we also
observed a p34 � p34

* interaction (F(10,100) � 5.7, p � 0.001, �p
2 �

0.36). The interaction can be observed by noting that, when the
presented final tone pitch was low (220 Hz), subjects rated the
final tone to be more likely when its expected pitch was also low
(paired t test for p34

* � low vs p34
* � high, t(10) � 3.2, p � 0.009,

difference � 0.50); in contrast, when the presented final tone
pitch was high (880 Hz), subjects rated the final tone to be more
likely when its expected pitch was also high (t(10) � 
3.4, p �
0.007, difference � 
0.49). Therefore, subjects’ likelihood rat-
ings for the final tone pitch were sensitive to its expected value,
which depends on the previous sequence history. This result sug-
gests that subjects were indeed able to capitalize on sequence
temporal dependence to make valid predictions. No other main
effect or interaction in the ANOVA was significant (all p � 0.15).
Therefore, likelihood ratings did not appear to be sensitive to the
pitch sequence variability (	) manipulation in our stimulus set.

See Materials and Methods “Subjects” section for results from
an additional behavioral dataset, which replicated the above find-
ings. We now proceed to investigate the neural mechanisms un-
derlying the predictive computation: What aspects of neural
activity encode a particular sequence and what aspects of neural
activity contribute to prediction? Finally, how is such prediction
constructed?

Figure 2. Behavioral performance. A, Trend strength rating. Heat map of the group-average distribution of trend strength ratings (transformed into the � scaling as “response �”) as a function
of true sequence � (“stimulus �”). Responses concentrated along the diagonal, suggesting that subjects could meaningfully perform the trend strength rating task. Spearman’s 
 for stimulus � and
response � was significantly above chance for every subject (all p � 0.001, n � 360 trials for each subject), with an average rho of 0.45. B, Final tone pitch likelihood rating. Final tone likelihood
rating is plotted as a function of presented final tone pitch ( p34; abscissa) and expected final tone pitch (p34

* ; red, low; black, medium; blue, high). A repeated-measures ANOVA revealed a significant
interaction between p34 and p34

* (F(10,100) � 5.7, p � 0.001, n � 11), which can be observed by noting the crossover effect of the red and blue curves. Red, black, and blue squares indicate mean
expected final tone pitch values for the respective conditions. Error bars denote SEM across subjects.
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Slow cortical dynamics track naturalistic tone sequences
To identify neural activity that encodes tone sequences, we
searched for components of the MEG activity that were reliably
modulated by repeated presentations of an identical tone se-
quence above and beyond sequences that were only statistically
similar. For each subject, we defined “identical” trial pairs as pairs
of trials in which the same initial 33-tone sequence was presented
and “similar” trial pairs as pairs of trials in which the initial 33-
tone sequences were different but exhibited the same sequence �
and variability 	 (Fig. 3A). For each sensor, we computed the
Pearson correlation of MEG activity time courses during the pre-
sentation of the first 33 tones in a sequence for all “identical” and
“similar” trial pairs. These correlation values were Fisher-z trans-
formed and averaged across trial pairs for the two groups of trials
separately and then submitted to a repeated-measures ANOVA
across subjects. There was a strong effect of “identical” versus
“similar” trial pair including all sensors (Fig. 3B left; all sensor-
level p-value � 0.047), which formed a single significant cluster
comprising all 271 sensors [p � 0.001, corrected by cluster-based
permutation test (henceforth “cluster-corrected”); cluster size �
271, dcluster � 14.9]. The magnitude of the effect was particularly
high in sensors overlying bilateral auditory cortices, with a right
lateralization. There was no significant interaction effect with the
temporal dependence (�) or variability (	) of stimulus se-
quences. Strikingly, these findings were almost identical when
MEG activity was low-pass filtered at �5, 3, or 1 Hz before com-
puting trial–pair correlations (the �3 Hz result is shown in Fig.

3B, right). Therefore, repetitions of an identical tone sequence
consistently modulated MEG activity in the low-frequency range.

To evaluate the frequency content of this activity more thor-
oughly, we computed a phase dissimilarity measure (for details,
see Materials and Methods) for each sensor at each frequency,
which quantifies the degree of phase locking to repetitions of an
identical stimulus sequence above and beyond that elicited by
statistically similar sequences and was computed as the difference
in phase coherence between “identical” and “similar” set of trials
(Luo and Poeppel, 2007). Reassuringly, mean phase dissimilarity
in the �3 Hz range (Fig. 3Ci) has a similar spatial pattern to the
results from the correlational analysis described above (Fig. 3B).
Phase dissimilarity as a function of frequency averaged across all
sensors is shown in Figure 3Cii (black trace), which revealed that
phase dissimilarity did not peak at a particular frequency, but
rather was spread across all frequencies �10 Hz, with the highest
values in the lowest frequencies. This pattern suggests phase lock-
ing in arrhythmic rather than oscillatory brain activity (He,
2014). The phase dissimilarity plots averaged across sensors in the
left and right clusters defined from full-band correlational anal-
ysis (black dots in Fig. 3B, left) exhibit similar patterns (Fig. 3Cii,
red and blue traces).

The phase dissimilarity curves exhibited sharp dips at the fre-
quency of tone presentation (3.3 Hz) and its harmonics (Fig.
3Cii, dashed vertical lines). To gain additional insight into this
pattern, we plotted across-trial phase coherence separately for
“identical” and “similar” trials (Fig. 3Ciii). Interestingly, whereas

Figure 3. Slow cortical dynamics track tone sequences. A, Analysis schematic. We defined “identical” trials as trials in which an identical tone sequence was presented repeatedly and “similar”
trials as trials in which tone sequences were statistically similar (same � and 	) but nonidentical. We identified neural activity encoding tone sequences by comparing MEG activity across-trial
correlation/coherence for identical versus similar trials. B, Correlation analysis. Across-subject mean F-values corresponding to the effect of “identical” versus “similar” trial pairs from within-subject
ANOVAs using across-trial correlation of the MEG activity time course as the dependent variable. A repeated-measures ANOVA across subjects shows a single significant cluster including all sensors
after correction by cluster-based permutation test ( p � 0.001, n � 11). Left, Result obtained using full-band (0.05–150 Hz) MEG data. Right, Result obtained using 0.05–3 Hz data. Black dots
indicate sensors where tone sequence tracking effect in the full band data was strongest (F �50). C, Phase dissimilarity analysis. Ci, Group-average phase dissimilarity (difference in phase coherence
between identical and similar set of trials) in the �3 Hz band is plotted across sensors. Block dots are the same as in B and were used to define left and right sensor clusters for subsequent analysis.
Cii, Phase dissimilarity by frequency for the sensor clusters shown in Ci, as well as for all sensors. Dashed vertical lines indicate tone presentation frequency (3.3 Hz) and its harmonics. Shaded areas
denote SEM across subjects. Ciii, Phase coherence across identical (green) and similar (magenta) set of trials, respectively, for the sensor clusters shown in Ci, as well as for all sensors. Peaks in the
plots correspond to tone presentation frequency and its harmonics.
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both “identical” and “similar” trials display strong phase locking
at the frequency of tone presentation and its harmonics, only
identical trial pairs exhibit additional arrhythmic, low-frequency
phase locking. Therefore, phase locking at 3.3 Hz and its harmon-
ics reflects consistent modulation of MEG activity locked to the
onset of each tone (likely contributed by the event-related field,
ERF, due to tone presentation) regardless of the evolving pitch
sequence. In contrast, phase locking in the low-frequency ar-
rhythmic activity tracks the specific sequence of pitch values.
Together, these results suggest that tone sequences with natural-
istic temporal statistical regularities consistently modulate slow,
arrhythmic brain activity.

Sequence integration in neural activity
The above results may reflect two possible scenarios: the MEG
activity might track the fluctuating tone pitches instantaneously
or integrate information in the sequence over a period of time.
Next, we tested whether MEG activity at a given moment de-
pended not only on the current tone pitch but also on the history
of preceding tone pitches.

To this end, we regressed MEG activity after the onset of a
given tone (using a 50-ms-long sliding window applied to full-
band data) onto the pitch values of the previous k� tones, for each
value of k� ranging from 0 to 15. We determined which value of k�
provided the best fit to the data at each sensor and time window
using a cross-validation approach (see Materials and Methods,
“History tracking analysis” section). The cross-validated k� value

thus describes the length of sequence history that affects neural
activity at a given moment. A schematic of this analysis is shown
in Figure 4A. We performed this analysis using both conventional
baseline-corrected tone ERFs and MEG activity without baseline
correction. The former reveals whether the evoked response to a
given tone is modulated by preceding tones. However, applying
baseline correction also removes any potential effect in neural
activity that accumulates over the course of sequence processing.
Such ongoing (i.e., non-baseline-corrected) activity is a good
candidate for carrying a continuously updated prediction for the
upcoming tone pitch (investigated in the next section). There-
fore, we also applied the regression analysis on non-baseline-
corrected data.

The result using baseline-corrected MEG responses is shown
in Figure 4B. As expected, k� values for all sensors are near 0
within the first 50 ms of tone onset. However, over time, groups
of sensors exhibiting sensitivity to the preceding tone sequence
begin to emerge. This effect achieves statistical significance in the
time window of 100 –150 ms (p � 0.01, cluster-corrected; cluster
size � 26, dcluster � 4.2, mean k� in cluster � 5.4, max k� in
cluster � 7.3; red dots in Fig. 4B), when a right-lateralized group
of sensors exhibit tone-evoked responses that are sensitive to the
pitch of up to 7 previous tones. Therefore, the evoked response to
a given tone depends on preceding tones in the sequence. This
result suggests history-dependent stimulus processing and is
consistent with the idea that, during neural processing of natu-
ralistic temporally extended stimuli, past information continu-

Figure 4. History-dependent neural responses. A, Analysis schematic. MEG activity in response to the i th tone in the sequence is regressed onto the pitch of tone i, as well as the pitch values of
the preceding k� tones, for all values of i occurring in the second half of the tone sequence. The regression is performed separately for each MEG sensor, in a sliding window w (length 50 ms) and a
cross-validation procedure is used to determine the value of k� that provides the best fit to the data. B, Length of history dependence in baseline-corrected MEG signals (i.e., evoked responses). The
optimal k� value determined for each sensor is plotted for each time window after tone onset. A right-lateralized sensor cluster in the 100 –150 ms time window survived correction by cluster-based
permutation test (red dots; p � 0.01, n � 11), where MEG response to a given tone is influenced by up to 7 prior tones.
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ously influences information processing in the present (Hasson
et al., 2015).

The result using non-baseline-corrected MEG data is shown
in Figure 5A. This analysis also revealed a right-lateralized sensor
cluster in the 100 –150 ms window exhibiting significant sensitiv-
ity to up to 7 previous tones (p � 0.001, cluster-corrected; cluster
size � 25, dcluster � 5.2, mean k� in cluster � 5.3, max k� in
cluster � 6.8), which persisted until 250 ms after tone onset
(150 –200 ms: p � 0.01, cluster corrected, cluster size � 21, dcluster �
3.5, mean k� in cluster � 5.1, max k� in cluster � 6.8; 200–250 ms:
p � 0.045, cluster corrected, cluster size � 13, dcluster � 2.1, mean k�
in cluster � 5.7, max k� in cluster � 7.0). An additional left-
lateralized sensor cluster emerged in the 250–300 ms window (p �
0.017, cluster-corrected; cluster size � 19, dcluster � 3.3, mean k�
in cluster � 5.3, max k� in cluster � 6.4). Therefore, ongoing
(non-baseline-corrected) MEG activity exhibits stronger history
dependence than the baseline-corrected, tone-evoked responses,
suggesting a build-up effect over time that contains information
integrated over sequence history.

Neural correlate of prediction
To identify neural mechanisms underlying sequence prediction,
we investigated whether brain activity during the penultimate
(33 rd) tone (which always had a pitch of 440 Hz) contains infor-
mation about the expected pitch of the upcoming final tone, p34

*

(see Materials and Methods, “Prediction effect” section). Because
sensory input during the penultimate tone is identical across all
trials, this analysis allowed a clean assessment of neural activity
underlying the predictive computation without the confounds of
concurrent sensory processing. Similar to the previous analysis,
we investigated MEG activity both with and without baseline
correction to focus on tone-evoked responses and slow fluctua-
tions that build up over multiple tones, respectively. Using
ongoing, non-baseline-corrected activity, the activity in a right
lateralized sensor cluster predicted the expected final tone pitch
in early (0 –50 ms) and late (200 –300 ms) time windows (Fig. 5B,
red dots, cluster-corrected; 0 –50 ms: p � 0.02, cluster size � 33,
dcluster � 3.1; 200 –250 ms: p � 0.001, cluster size � 53, dcluster �
6.5; 250 –300 ms: p � 0.001, cluster size � 59, dcluster � 6.1). The

average activity time courses in the significant sensor cluster from
the 200 –250 ms time window are shown in Figure 5C for trials
with low, medium, and high expected final tone pitch, respec-
tively, which exhibit a monotonic relationship with the expected
pitch of the upcoming tone. No significant effect was found using
baseline-corrected data. Therefore, the neural signature of pre-
diction is carried by slow cortical dynamics that accumulates
information over the tone sequence.

Sequence integration accounts for prediction
The above result reveals a neural correlate of subjects’ predictions
about upcoming, but yet unpresented, stimulus. A remaining
important question is the computational mechanisms leading to
the construction of such predictive neural activity. Given that
predicting upcoming items in a sequence requires integrating
information over sequence history and extrapolating based on its
temporal statistical regularity, could the sequence integration ef-
fect observed in our earlier analysis directly form the basis for
predictive computation? We reasoned that, if this were the case,
then the MEG activity during the penultimate tone that is pre-
dicted by sequence history integration (Fig. 5A) should also be
predictive of the expected final tone pitch (as assessed in Fig. 5B).
This is a substantive empirical question because the results thus
far are consistent with the possibility that the neural integration
of tone sequence history revealed in our analysis serves no pre-
dictive function.

We investigated this question using the following analysis. For
each subject, we computed the component of (non-baseline-
corrected) MEG activity during penultimate tone presentation
that is accounted for by stimulus history (including the present
tone) based on the history dependence analysis described earlier
(Fig. 5A; for details, see Materials and Methods, “Relating history-
dependent MEG response with p34

* ” section). Call this activity MH,
where the “H” superscript denotes sequence history (Fig. 6A, mid-
dle). We then computed the residual activity not accounted for by
sequence history, M res (Fig. 6A, right). Therefore, M H captures
the portion of neural activity that linearly depends on tone pitch
history, whereas M res captures any additional nonlinear depen-
dencies as well as other influences. We next repeated the above

Figure 5. Neural correlates of history integration and prediction. A, Length of history dependence in non-baseline-corrected MEG signals (i.e., ongoing/accumulated activity). Same as Figure 4B,
but for non-baseline-corrected data. Red dots indicate sensors belonging to significant clusters (all p � 0.05, cluster-based permutation test, n � 11). B, Neural correlate of prediction. Using a 50
ms sliding window, non-baseline-corrected MEG activity during the penultimate tone (which always had a pitch of 440 Hz) was regressed onto the expected pitch of the final tone to determine which
sensors showed a significant prediction effect. Maps plot the t-values corresponding to a group-level one-sample t test on regression coefficients at each sensor and time location. Red dots indicate
sensors belonging to significant clusters (all p � 0.05, cluster-based permutation test, n � 11). C, MEG activity during penultimate tone as a function of expected final tone pitch. The non-baseline-
corrected MEG signal for sensors in the significant cluster from the 200 –250 ms window (red dots in B) as a function of the expected pitch of the final tone. A monotonic relationship can be seen in
the significant time window. Note that, although expected pitch is binned into three levels here for illustration purposes, the regression analysis depicted in B used continuously varying expected
values for pitch.
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tone pitch prediction analysis by regressing MEG activity onto
p34

* (as in Fig. 5B), but using M H and M res as the dependent
variables.

The scalp topography of regression weights in the window of
200 –250 ms are shown in Figure 6B. Consistent with our hypoth-
esis that sequence history integration reflected in MEG activity
contributes to its predictive sensitivity to the upcoming tone’s
expected pitch, the originally observed relationship between
MEG activity and expected pitch was closely mirrored by M H, but
not M res. Using the significant sensor cluster showing a predic-
tion effect in the 200 –250 ms window (Fig. 5C, reproduced in Fig.
6C, left, using a 50 ms sliding window), we further found that the
component of its activity that is attributable to sequence history
(M H; Fig. 6C, middle), but not the residual activity (M res; Fig. 6C,
right), shows a linear relationship with p34

* .
We quantified these observations by comparing the regression

weights for p34
* obtained using the original MEG activity during

the penultimate tone (M orig) with those obtained using M H and
M res for the sensor clusters exhibiting a significant prediction

effect in the 200 –250 ms and 250 –300 ms time windows (Fig. 5B,
red dots). The regression weights are plotted across sensors for
M orig against M H (Fig. 6D, red) and for M orig against M res (Fig.
6D, black). There was a strong correlation between the regression
weights for M orig and M H (200 –250 ms: r � 0.89, p � 10
15,
regression coefficient � 0.78, n � 53; 250 –300 ms: r � 0.93, p �
10
15, regression coefficient � 0.79, n � 59). Therefore, the
sensitivity of the MEG activity to the expected upcoming tone
pitch is largely explained by its linear sensitivity to the preceding
tone sequence. In contrast, the relationship between the regres-
sion weights for M orig and M res was considerably weaker though
non-negligible (200 –250 ms: r � 0.48, p � 0.0003, regression
coefficient � 0.22, n � 53; 250 –300 ms: r � 0.56, p � 4 � 10
6

and regression coefficient � 0.21, n � 59). This suggests that the
linear history dependence of the MEG activity cannot entirely
explain the predictive effect, and nonlinear history dependence
may carry additional prediction effect.

Overall, these results suggest that linear integration of se-
quence history contained in slow, arrhythmic neural activity con-

Figure 6. Neural integration of stimulus history accounts for prediction. A, Analysis schematic. The (non-baseline-corrected) MEG activity during the penultimate tone (left column) can be
expressed as the component accounted for by stimulus history integration (middle column) plus residual (right column). Prediction effect for each signal is then assessed by regressing the activity
onto the expected final tone pitch, as in Figure 5B. B, Regression coefficients of the expected final tone pitch for the original MEG activity during the penultimate tone (left, from the 200 –250 ms
window), its history-dependent component (middle), and the residual (right). Maps show mean coefficients across subjects. C, MEG activity time courses during penultimate tone as a function of
expected final tone pitch. Left, Reproduced from Figure 5C, but with 50-ms-length, half-overlapping sliding windows. Middle and right, Component constructed from history integration effect and
the residual, respectively. D, Comparison of regression coefficients for Morig, M H, and M res across sensors. For sensor clusters showing significant prediction effects in the time windows 200 –250 ms
(top) and 250 –300 ms (bottom) (red dots in Fig. 5B), the original and history-dependent MEG activity exhibit similar sensitivity to p34

* (red dots and lines; 200 –250 ms: r � 0.89, p � 10 
15, n �
53; 250 –300 ms: r � 0.93, p � 10 
15, n � 59). In comparison, the residual activity is much less sensitive to p34

* (shown by the black dots being closer to the ordinate value of 0) and less similar
to the original response (200 –250 ms: r � 0.48, p � 0.0003, n � 53; 250 –300 ms, r � 0.56, p � 4 � 10 
6, n � 59). Dashed lines indicate unity.
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stitutes a prominent component of predictive processing for
upcoming items in the sequence.

Sequence integration weights resemble scaled optimal
prediction weights
Further insight into the relationship between history-dependent
processing and prediction follows from the fact that both the
history-dependent MEG activity M H and the optimal predicted
pitch p34

* are defined as weighted sums of the preceding pitch
values. Therefore, we can investigate the relationship between
history-dependent processing and prediction by analyzing the
relationship between the weights on the pitch sequence history
that determine M H and p34

* .
As shown in the Materials and Methods section “Relationship

between history tracking weights and optimal prediction weights,”
error in the regression of pitch-history-dependent MEG activity
M H onto the expected pitch p34

* depends on the discrepancy be-
tween the weights characterizing history dependence in MEG
activity and a scaled version of the weights determining optimal
pitch prediction (Eqs. 7 and 8), where the scaling factor is the �1

H*

coefficient determined by the regression of M H onto p34
* (Eq. 6).

Optimal prediction weights for � � 0 and � � 0.5 sequences (as
defined in Eq. 1) are plotted in Figure 7A, top row. Optimal
prediction weights for � � 1.01 and � � 1.5 sequences (as de-
fined in Eq. 2) are plotted as solid lines in Figure 7A, bottom row,
along with the prediction weights for the corresponding fGn se-
quences (dashed lines), which were used to derive the optimal
prediction weights for � � 1 sequences (see Materials and Meth-
ods for details).

We investigated how history tracking weights compared with
scaled optimal prediction weights in the cluster of sensors show-
ing significant prediction effect in the 200 –250 ms time window
(Fig. 7B, inset, displaying the result from Fig. 5B). We computed
the average k� value in this cluster for the 200 –250 ms and 250 –
300 ms time windows (time period with significant prediction
effects; Fig. 5B), k�avg, w, and then compared averaged history
tracking and scaled prediction weights across sensors in the clus-
ter extending k�avg, w tones back. As expected, history dependence
weights for MEG activity exhibited a pattern qualitatively similar
to that of scaled optimal prediction weights (Fig. 7B). This sug-
gests that modulation of neural activity due to pitch sequence
history follows a pattern similar to the manner in which the ex-
pected pitch for the upcoming tone depends on pitch sequence
history and that this similarity between neural history depen-
dence and the calculation of expected pitch is what underlies the
neural prediction effect.

The results in Figure 7B suggest that the pitch of the current
(k � 0) and previous (k � 1) tones have opposite effects on MEG
activity. To quantify this effect, we computed the across-sensor
lagged correlation between the weight on the current pitch, �1

(corresponding to k � 0), and the weight on pitch k tones back
(k � 0), �k�1, for sensors in the prediction cluster (Fig. 7B, inset).
An example correlation between �1 and �2 (corresponding to
weights on the current and immediately preceding tones) for a
single subject is shown in Figure 7C. For each level of lag (k), we
performed a one-sample t test on the Fisher’s z-transformed cor-
relation coefficients to assess significance at the group level. We
found that the lag-1 correlation was significant at both the 200 –
250 ms (t(10) � 
3.0, p � 0.01, Cohen’s d � 
0.92) and 250 –300
ms (t(10) � 
2.3, p � 0.04, Cohen’s d � 
0.69) time windows
(Fig. 7D), indicating that, for sensors in the significant prediction
cluster, the current and previous tone pitch had opposing effects
on MEG activity. The lag-4 correlation was also significant for the

200 –250 ms time window (t(10) � 
2.3, p � 0.04, Cohen’s d �

0.69), consistent with the observation that both history track-
ing weight and scaled prediction weight have negative values for
k � 4 (Fig. 7B).

Replication of main findings in an independent sample
To assess the robustness of our main findings, we analyzed an
independent dataset from 20 additional subjects who performed
a slightly modified version of the experiment (for details, see
Materials and Methods, “Replication of main results in an inde-
pendent sample” section).

Consistent with earlier results (Fig. 2A and Lin et al., 2016),
subjects were able to discriminate sequence � (t test on z-transform
of Spearman correlation coefficients between sequence � and
trend strength rating, t(19) � 5.5, p � 3 � 10
5, Cohen’s d �
1.23). Following the analysis of Figure 2B, we first established that
subjects exhibited a behavioral prediction effect by performing a
6 (p34) � 3 (p34

* ) repeated-measures ANOVA on likelihood rat-
ings for the final tone pitch. The p34 � p34

* interaction was highly
significant (F(10,190) � 20.4, p � 0.001, �p

2 � 0.52), reflecting the
fact that subjects’ likelihood ratings for the final tone pitch were
sensitive to the expected pitch (Fig. 8A). The interaction can be
observed by noting that, when the presented final tone pitch was
low (220 Hz), subjects rated the final tone to be more likely when
its expected pitch was also low (paired t test for p34

* � low vs p34
* �

high, t(19) � 3.7, p � 0.002, difference � 0.95); in contrast, when
the presented final tone pitch was high (880 Hz), subjects rated
the final tone to be more likely when its expected pitch was also
high (t(19) � 
7.9, p � 2 � 10
7, difference � 
1.66). There was
also a main effect of p34 (F(5,95) � 10.1, p � 9 � 10
8, �p

2 � 0.35),
reflecting the inverse U shape of the function.

Second, following the analysis of Figure 5B, we established
that subjects exhibited a neural prediction effect by regressing
non-baseline-corrected MEG activity during the penultimate
tone onto expected final tone pitch. Replicating the key finding in
the main experiment (Fig. 5B), we found a right-lateralized clus-
ter of sensors exhibiting the prediction effect in the 200 –250 ms
and 250 –300 ms time windows (Fig. 8B, red dots, cluster-cor-
rected; 200 –250 ms: p � 0.009, cluster size � 28, dcluster � 4.5;
250 –300 ms: p � 0.004, cluster size � 34, dcluster � 5.3). In these
time windows, there was also a significant left-lateralized predic-
tion cluster (Fig. 8B, red dots, cluster-corrected; 200 –250 ms: p �
0.001, cluster size � 42, dcluster � 8.6; 250 –300 ms: p � 0.003,
cluster size � 36, dcluster � 5.5). We found a similar left-
lateralized group of sensors exhibiting a prediction effect in the
same time windows in the main experiment (Fig. 5B), although
this group of sensors did not pass the significance threshold es-
tablished by cluster correction in the main experiment.

Third, following the analysis of Figure 6D, we established that
the prediction effect is related to the linear history tracking effect.
As in Figure 6, we partitioned the original MEG data, M orig, into
the component accounted for by history tracking, M H, and the
residual, M res. We then compared the regression weights ob-
tained by regressing Morig, M H, and M res onto p34

* for the 200 –250
ms and 250 –300 ms time windows. The regression weights are
plotted for Morig against M H (Fig. 8C, red) and for Morig against
M res (Fig. 8C, black), separately for the right- and left-lateralized
significant prediction clusters (top and bottom rows of Fig. 8C,
respectively). For both clusters, there was a strong correlation
between the regression weights for Morig and M H (right cluster,
200 –250 ms: r � 0.81, p � 3 � 10
7, regression coefficient �
0.63, n � 28; right cluster, 250 –300 ms: r � 0.93, p � 3 � 10
15,
regression coefficient � 0.92, n � 34; left cluster, 200 –250 ms:
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Figure 7. Relationship between history integration weights and optimal prediction weights. A, Optimal prediction weights as a function of sequence �. For 1/f �-type sequences, the expected
value of the upcoming item is a weighted sum of the previous items; these weights (“optimal prediction weights”) are plotted as solid lines for each � level. For � � 1, expected value depends on
the ak�1 weights (Eq. 1). For �� 1, expected value depends on the weights [a1, (a2 
 a1), …, (ak � 1 
 ak), 
ak � 1] (Eq. 2). For �� 1 sequences, dashed lines show optimal prediction weights
for the corresponding fGn sequence with scaling parameter �-2, which were used to derive the weights in Equation 2 and shown in solid lines. B, History integration weights resemble scaled optimal
prediction weights. In the time window of 200 –300 ms, the dependence of MEG activity on pitch history (solid lines) in the significant prediction cluster (inset left column, red sensors; reproduced
from Fig. 5B, 200 –250 ms window) reflected the pattern exhibited by the scaled optimal prediction weights averaged across sequence � (dashed lines). This resemblance accounts for why
history-dependent MEG activity carries the prediction effect (Fig. 6; Eqs. 7 and 8). C, Correlation between history integration weights on current and previous pitches. To further explore the apparent
opposing effects of the current and previous pitch on MEG activity illustrated in B, we computed across-sensor correlations in the prediction cluster between the weight on the current pitch, �1, and
weights on previous pitches, �k � 1, k � 1. Here, we show an example scatterplot of the across-sensor relationship between �1 and �2 for one subject. D, Inverse correlation between current
and previous pitch weight. Across subjects, the influence of the current and previous tone pitch on MEG activity was significantly inversely correlated for the 200 –250 ms (t(10) �
3.0, p � 0.01)
and 250 –300 ms (t(10) �
2.3, p � 0.04) time windows, as assessed by a one-sample t test on the Fisher’s z-transform of the correlation coefficients. Asterisks denote p � 0.05. Error bars denote
SEM across subjects.
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r � 0.80, p � 3 � 10
10, regression coefficient � 0.75, n � 42; left
cluster, 250 –300 ms: r � 0.85, p � 9 � 10
11, regression coeffi-
cient � 0.76, n � 36). Therefore, this result reproduces the orig-
inal finding in the main experiment (Fig. 6D) that the sensitivity
of the MEG activity to the expected upcoming tone pitch is
largely explained by its linear sensitivity to the preceding tone
sequence. In addition, as in the main experiment, the relationship
between the regression weights for Morig and M res was consider-

ably weaker though non-negligible (right cluster, 200 –250 ms:
r � 0.63, p � 4 � 10
4, regression coefficient � 0.37, n � 28;
right cluster, 250 –300 ms: r � 0.21, p � 0.24, regression coeffi-
cient � 0.08, n � 34; left cluster, 200 –250 ms: r � 0.40, p � 0.009,
regression coefficient � 0.25, n � 42; left cluster, 250 –300 ms:
r � 0.45, p � 0.006, regression coefficient � 0.24, n � 36).

In summary, the primary behavioral and neural findings per-
taining to pitch prediction and its relationship to pitch history
tracking (Figs. 2B, 5B, 6D) replicated in a second independent
dataset (Fig. 8), demonstrating the robustness of these findings.

Discussion
In summary, we used precisely constructed tone sequences with
temporal statistical regularities representative of temporally vary-
ing stimuli in the natural environment to investigate predictive
processing in the human brain. We first established that humans
can form valid predictions about upcoming items in such se-
quences by extrapolating from sequence history. We then reveal
the underlying neural mechanisms for such predictive processing
by showing that: (1) these naturalistic stimuli consistently mod-
ulate slow, arrhythmic neural activity; (2) ongoing neural activity
predicts the expected pitch of the upcoming tone; and (3) such
predictive activity is constructed by neural integration of se-
quence history. These findings further our understanding about
predictive computations in the human brain significantly and
reveal an important role for slow, arrhythmic brain activity in the
processing and prediction of naturalistic stimuli.

We observed that the phase of arrhythmic neural activity in
the �10 Hz range tracked pitch fluctuation in a tone sequence.
This observation generalizes a previous finding showing that,
when tone sequences with 1/f � pitch fluctuation are amplitude
modulated at 40 Hz, the phase of a 40 Hz entrained neural oscil-
lation tracks the evolving pitch sequence (Patel and Balaban,
2000). Here, we show that, in the absence of such artificial am-
plitude modulation, the phase of low-frequency arrhythmic neu-
ral activity tracks the evolving pitch sequence. In addition, we
demonstrate that slow, ongoing neural activity that accumulates
information over multiple tones plays a crucial role in integrating
sequence history and predicting upcoming stimulus input. These
findings complement previous research showing phase locking of
low-frequency neuronal oscillations to rhythmic stimuli, which
may align high-excitability phases to events within a stimulus
stream and thereby enhance perceptual sensitivity (Schroeder
and Lakatos, 2009). Such phase locking to periodic stimuli (a
tone every 300 ms) was also evident in our data (Fig. 3Ciii).
However, our results show that the processing of an evolving
sequence of pitches over multiple tones was carried by slow, ar-
rhythmic neural activity (Fig. 3Cii). This slow, arrhythmic neural
activity was previously shown to have behavioral, developmental,
and clinical significance (Monto et al., 2008; He et al., 2010; He,
2014; Voytek et al., 2015; Lin et al., 2016). Our results signifi-
cantly extend this prior literature by demonstrating that it serves
an important role in processing and predicting natural stimuli,
consistent with an earlier hypothesis (He et al., 2010).

The current study advances our understanding of the neural
mechanisms of prediction in two important directions. First, our
results establish that human subjects can make valid predictions
of upcoming stimulus features for naturalistic stimulus se-
quences by extrapolating from their temporal statistical regular-
ities and reveal a neural correlate for such predictions. Second, we
describe a mechanism for how the content of prediction is con-
structed based on neural processing of sequence history. Below
we elaborate on these findings.

Figure 8. Reproduction of main findings in an independent dataset. We collected MEG data
from 20 additional subjects on a modified version of the task paradigm (for details, see Materials
and Methods). A, Behavioral prediction effect (cf. Fig. 2B). A 6 ( p34) � 3 (p34

* ) repeated-
measures ANOVA on likelihood ratings for the final tone pitch yielded a significant p34 � p34

*

interaction (F(10,190) �20.4, p�0.001), indicating that subjects’ likelihood ratings for the final
tone were sensitive to the expected pitch value. B, Neural correlate of prediction (cf. Fig. 5B). As
in the main experiment, a right-lateralized cluster of sensors (red dots) exhibited a significant
linear relationship with expected pitch in the 200 –250 ms and 250 –300 ms time windows. A
left-lateralized cluster also emerged as a significant neural correlate of prediction in these data
(a similar pattern was observed in the main experiment, which did not pass statistical signifi-
cance). C, Linking history tracking and prediction (cf. Fig. 6D). Across sensors in the right-
lateralized prediction cluster (top row) and left-lateralized prediction cluster (bottom row), the
original and history-dependent MEG activity exhibit similar sensitivity to p34

* (red dots and
lines). In comparison, the residual activity is much less sensitive to p34

* (shown by the black dots
being closer to the ordinate value of 0) and less similar to the original response. Dashed lines
indicate unity. For statistics, see Results.
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Previous studies on stimulus feature prediction based on sta-
tistical regularities have often used repeated presentations of se-
quences, items, or pairs of items. A notable exception is Garrido
et al. (2013), who presented subjects with sequences of tones with
pitches randomly drawn from Gaussian distributions and found
that the width of the Gaussian distribution influenced the mag-
nitude of mismatch negativity elicited by tones at the tail of the
distribution. In the present study, we take this idea further by
using tone sequences with temporal statistical regularities similar
to those encountered in the natural environment. For such se-
quences, prediction is derived by extrapolating statistical regular-
ities in the stimulus, not by repetition. Indeed, our task design
ensured that prediction of the final tone pitch could not be de-
rived from associative learning over repeated sequence presenta-
tions because the final tone pitch on each trial was randomly
selected from the same set of six possible pitch values for every
sequence. Instead, the statistical regularity inherent in sequence
history p1, …, pN
1 established an expectation for what values pN

would likely have, given that it should be a natural continuation
of the overall trend of the preceding tones. To our knowledge, our
findings are the first demonstration that human subjects can
make valid predictions based on naturalistic temporal statistical
regularities.

Previous studies using instructive cues and associative learn-
ing have revealed correlates of prediction in neural activity before
and during the presentation of a predicted stimulus that is con-
gruent with a categorical prediction (Erickson and Desimone,
1999; Schlack and Albright, 2007; Puri et al., 2009; Esterman and
Yantis, 2010; Hanks et al., 2011; Kok et al., 2013; de Lange et al.,
2013). Using a novel experimental design to probe predictions
formed by extrapolating temporal statistical regularities, we dis-
covered a novel neural correlate of prediction during continuous
sensory processing that is formed based on evolving stimulus
history and carries a continuous-valued predictive content. The
neural correlate of prediction was found in non-baseline-
corrected data, but not in baseline-corrected data. This suggests
that prediction was carried by slow, ongoing neural activity that
accumulates over the evolving sequence, rather than by fast,
evoked responses to each tone. This result is consistent with a
previous study showing that the magnitude of a slow EEG poten-
tial increases across consecutive trials in which a frequent “global
standard” tone sequence was played as if in anticipation of
the eventual presentation of the rare “global deviant” sequence
(Chennu et al., 2013). Nonetheless, this previous finding may
also reflect a general process of attentional readiness in antic-
ipation of the eventual presentation of a task-relevant stimu-
lus (Tecce, 1972). In the current experiment, the subject’s
attentional state was equated across different expected values
of final tone pitch, given the random order of sequence pre-
sentation and identical task demands, allowing us to identify a
neural correlate of the content of prediction without the con-
found of attention.

An important further question is how the content of predic-
tion is actually formed. For paradigms in which prediction is
established by associative learning, the presentation of a stimulus
may activate the neural representation of its associate via lateral
projections in sensory regions formed during learning (Albright,
2012). For paradigms based on repeated presentations of items or
sequences, adaptation and plasticity are likely at play (Yaron et
al., 2012; Gavornik and Bear, 2014). For predictions established
by an explicit instructive cue, the cue may activate the neural
representation of its predictive content via a combination of top-
down and bottom-up factors (Albright, 2012; Summerfield and

de Lange, 2014). However, prediction derived from extrapolation
of sequence history, such as that investigated herein, likely re-
quires a different set of mechanisms given its reliance on statisti-
cal trend instead of fixed repetitions or explicit instruction.

Here, we describe a mechanism for constructing the predicted
feature of an upcoming stimulus in an evolving stimulus se-
quence. We show that neural activity processing a given tone in a
sequence contains linear dependence on up to seven prior tones.
We further demonstrate that this linear integration of sequence
history in ongoing (i.e., accumulated, not-baseline-corrected)
neural activity largely accounted for the neural substrate of pre-
diction about upcoming stimulus. Although future investigation
is needed to determine the extent to which nonlinear dependence
on sequence history may facilitate predictive processing, our
finding points to a potential general mechanism for sequence
prediction that is remarkably simple: neural integration of
stimulus history forms the prediction for the upcoming stimulus
feature directly. Indeed, an interesting question for future inves-
tigation is the extent to which the mechanism uncovered herein
generalizes to stimulus sequences with non-1/f-type temporal
dependences.

To our knowledge, neither linear integration of pitch se-
quence history nor the linear effects of pitch prediction in neural
activity were previously reported. Using MEG source analysis, an
earlier study demonstrated a monotonic relationship between
pitch and the amplitude and latency of tone-evoked responses in
auditory cortex (Krumbholz et al., 2003), providing precedent
for linear effects of pitch processing in MEG activity.

The opposing effects of the current and previous tone pitch on
neural activity (Fig. 7B–D) may seem to be consistent with the
predictive coding framework in which the integration of pitch
sequence history (representing the expected pitch) opposes the
neural response to the current pitch, thus generating a prediction
error signal. However, it is important to note that, in our analyses
linking history integration with prediction (Figs. 6, 7), the influ-
ence of the current and past pitches on neural activity do not
represent a prediction error for the current pitch, but rather con-
stitute a prediction for the upcoming pitch. In addition, the op-
posing effects of the current and previous tone pitch are best
understood as arising from the mathematics of prediction in se-
quences exhibiting naturalistic temporal dependence (Fig. 7A),
which produces the opposing pattern seen in neural history de-
pendence (Fig. 7B).

A line of previous work revealed a hierarchy of temporal inte-
gration windows in neural activity (Gauthier et al., 2012; Honey
et al., 2012; Chaudhuri et al., 2015), but it was unknown whether
such neural integration of stimulus history plays a role in predic-
tive computations (Hasson et al., 2015). Our results fill in this
missing link by demonstrating that neural integration of stimulus
history contains predictive information about upcoming stimulus
features. Currently, it remains unclear whether the window of
history integration uncovered herein is determined by abso-
lute time (in seconds) or by the amount of information (in
bits) (Hasson et al., 2015); future studies manipulating stim-
ulus duration upon the current design could tease apart these
intriguing possibilities.

The integration of stimulus sequence history in neural activity
uncovered herein bears some resemblance to the recently de-
scribed phenomenon of serial dependence in vision (Fischer and
Whitney, 2014; Liberman et al., 2014; but see Fritsche et al., 2017)
in which a misperception of the currently presented stimulus
occurs due to a bias toward recent stimulus history. Studies on
serial dependence in vision have so far used randomly varying

Maniscalco et al. • Predictive Processing of Naturalistic Stimuli J. Neurosci., February 7, 2018 • 38(6):1541–1557 • 1555



stimuli and it was postulated that misperception in such a para-
digm may in fact be predictive/adaptive when faced with natural
stimuli that contain temporal dependence (Burr and Cicchini,
2014; Liberman et al., 2014). Here, using stimulus sequences that
capture the temporal dependence structure of natural stimuli, we
show that history integration encoded in neural activity indeed
forms the basis for predictive computation.

In conclusion, we demonstrate that human subjects can ex-
ploit temporal dependence in naturalistic stimuli to predict
upcoming stimulus features. We further identify a neural mech-
anism underlying such prediction whereby the neural activity
processing the current item in a sequence encodes the predicted
feature of the upcoming item. This predictive component of neu-
ral activity is in turn constructed based on a largely linear inte-
gration of sequence history.

Notes
Supplemental Material for this article is available at https://med.
nyu.edu/helab/Maniscalco_etal_2018_SI. In this analysis we ad-
dress an aliasing effect found in the B � 1.01 sequences discov-
ered after data collection. We discuss the consequences of this
effect and demonstrate that the main results reported in the man-
uscript remain if B � 1.01 sequences are excluded from analyses.
This material has not been peer reviewed.
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