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Abstract

■ Humans spend hours each day spontaneously engaging with
visual content, free from specific tasks and at their own pace.
Currently, the brain mechanisms determining the duration of
self-paced perceptual behavior remain largely unknown. Here,
participants viewed naturalistic images under task-free settings
and self-paced each image’s viewing duration while undergoing
EEG and pupillometry recordings. Across two independent data
sets, we observed large inter- and intra-individual variability in
viewing duration. However, beyond an image’s presentation
order and category, specific image content had no consistent
effects on spontaneous viewing duration across participants.
Overall, longer viewing durations were associated with sus-
tained enhanced posterior positivity and anterior negativity in
the ERPs. Individual-specific variations in the spontaneous

viewing duration were consistently correlated with evoked
EEG activity amplitudes and pupil size changes. By contrast,
presentation order was selectively correlated with baseline
alpha power and baseline pupil size. Critically, spontaneous
viewing duration was strongly predicted by the temporal stability
in neural activity patterns starting as early as 350 msec after
image onset, suggesting that early neural stability is a key predic-
tor for sustained perceptual engagement. Interestingly, neither
bottom–up nor top–down predictions about image category
influenced spontaneous viewing duration. Overall, these results
suggest that individual-specific factors can influence perceptual
processing at a surprisingly early time point and influence the
multifaceted ebb and flow of spontaneous human perceptual
behavior in naturalistic settings. ■

INTRODUCTION

What determines the duration of our spontaneous engage-
ment with the perceptual environment? From taking a
walk to the omnipresent social media engagement, every-
day perceptual behavior is predominantly spontaneous: It
is task-free and self-paced by the observer (Baror & He,
2021). However, in most laboratory-based experiments
perceptual behavior is constrained by task demands, its
timing and duration predetermined by experimental
design. This approach is highly successful in providing
insights into the neural basis of human perception but is
inherently limited in its generalizability to natural percep-
tual experiences, which involve a variety of competing
and coordinatingmechanisms, resulting in high temporal
variability both within and across individuals.

This fundamental gap is widely acknowledged in recent
years, with the call for more ecologically valid studies that
involve naturalistic stimuli (Snow & Culham, 2021; Haxby,
Gobbini, & Nastase, 2020; Nastase, Goldstein, & Hasson,
2020; Sonkusare, Breakspear, & Guo, 2019) and encour-
age intersubject variability rather than suppress it (Miller
et al., 2022). Accordingly, recent neuroscientific research
on human perceptual behavior increasingly incorporates
paradigms in which task constraints are minimized, such

as movie-viewing (Baldassano et al., 2017; Bartels & Zeki,
2004; Hasson, Nir, Levy, Fuhrmann, & Malach, 2004) or
image free-viewing (Henderson, Goold, Choi, & Hayes,
2020; Henderson & Hayes, 2017). Nonetheless, in these
earlier experiments, participants lacked agency over view-
ing durations and, consequently, inter- and intra-subject
variability in the time domain is abolished. Thus, the
underlying mechanisms of self-paced perceptual behav-
iors remain largely unexplored.
Here, we aimed to reveal the neural mechanisms deter-

mining the duration of task-free, self-paced visual percep-
tion. To this end, participants viewed a sequence of
images, while only being asked to maintain eye fixation
(to minimize EEG and eye-tracking artifacts) and press a
key whenever they wanted to proceed to the next image
(Figure 1A). In contrast to paradigms with fixed trial dura-
tions, this paradigm mimics the self-paced nature of natu-
ralistic perceptual experiences such as social media
engagement. Consequently, data contained significant
intersubject as well as intrasubject variability in viewing
durations. Participants’ brain activity and pupil dynamics
were measured by concurrent high-density EEG and
high-speed eye-tracking during task performance.
Our secondary aim was to examine whether predictive

processing influences the duration of self-paced percep-
tual behavior. Predictive processing has been shown to
play a pivotal role in perception (de Lange, Heilbron, &
Kok, 2018; Clark, 2013; Friston, 2005), facilitating
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conscious perception, recognition, and categorization
processes. However, self-paced perceptual behavior, such
as viewing images on your phone, extends much longer
durations than typically assessed in these earlier

paradigms. Whether the predictive influences that are typ-
ically found in temporally controlled settings with briefly
presented stimuli extend to longer timescales in spontane-
ous viewing settings remains unknown.

Figure 1. Paradigm and behavior. (A) Images of faces and scenes were presented sequentially on the screen and viewing duration was self-
determined by the participants. Cues were presented in between the images, with “switch” indicating a change of category (e.g., a scene is followed
by a face) and “same” indicating category repetition (e.g., a face is followed by a face). Four hundred images were presented, divided into four blocks,
allowing rest between blocks. (B) Image conditions. Cues were 70% valid, leading to four randomly ordered image conditions in each image category:
expected repetition, expected change, unexpected repetition, and unexpected change. These conditions orthogonalize top–down expectations and
bottom–up contextual repetitions. (C) Scene category effect on viewing duration. A three-way, repeated-measures ANOVA shows that in both data
sets, scenes were viewed significantly longer than faces. Context and expectation conditions did not significantly influence viewing duration. (D)
Serial order effect on viewing duration. Left: Mean viewing duration across participants as a function of the order of image presentation (40 trials in
each bin). Shaded areas denote SEM across participants. Right: Serial order negatively correlated with viewing duration. Dots denote individual
participants’ Spearman correlation values. (E) Mean viewing duration of images in the fixed data set ordered from shortest to longest according to
group-mean (gray). Viewing duration of those images in the random data set (yellow) does not show a similar trend. Shaded areas depict SEM across
participants. Boxes in the figure’s boxplot denote 50% of central data (between the first and third quartiles). Boxplot’s black lines indicate the
median. *p < .05, **p < .01, ***p < .001.
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To achieve our secondary aim, we included a trial-level cue
(“same” or “switch”) that predicted an upcoming image
category repetition or change with 70% validity (Figure 1B).
Predictions regarding an upcoming event may be generated
by learned bottom–up contextual regularities (Baumgarten
et al., 2021) or top–down expectations (Kok, Mostert, & de
Lange, 2017). Our paradigm orthogonalized these two
factors, as contextual changes (or repetitions) could be
expected or unexpected. This design allowed us to test
whether top–down expectations and bottom–up context
influence spontaneous viewing durations in a temporally
extended, self-paced setting. On the basis of earlier findings,
wehypothesized that both top–down andbottom–uppredic-
tive factors would influence spontaneous viewing duration.

To preview our main results, across two independent
data sets, we found that the duration of spontaneous,
self-paced visual perception for a specific image has large
interindividual variability and is predicted by pupil size
responses and evoked EEGmagnitudes at an early latency
(150 msec after image onset). Spontaneous viewing dura-
tion was also strongly predicted by the temporal stability in
neural activity patterns starting at 350 msec from image
onset. Interestingly, contrary to our hypothesis, neither
bottom–up nor top–down predictive factors influenced
spontaneous viewing duration, suggesting that perceptual
behavior unfolding over longer timescales in a more natu-
ralistic setting may bemore robust tomoment-to-moment
predictive influences.

METHODS

Participants

This study involves two independent concurrent task-
EEG/pupillometry data sets, with n = 20 and n = 18,
respectively. This sample size was determined by prior
studies using similar methods, which typically have 25–
35 participants in total. The two independent data sets
provided a within-study replicability and generalizability
check (see below for details on how the task protocol dif-
fered between them).

Thirty-eight participants took part in the experiment (19
women, mean age = 23.34 years), in two different data
sets. The main analyses in the study were conducted using
data from a group of 20 healthy participants, each viewing
a randomly ordered sequence of face and scene images
(hereafter referred to as the “random data set”); thus, all
participants in this group viewed the same set of images but
in different orders. Another group of 18 participants com-
pleted the experiment as a replication group. This data set
differed from the main experimental group in that images
were presented in a fixed order across participants (hereafter
referred to as the “fixed data set”). Results of this replication
group are reported alongside the main results. All partici-
pants signed informed consent before participating in the
study; the studywas approved byNew York University Lan-
gone institutional review board (Protocol No.: s15–01323).

Stimuli

Two hundred eighty scene images were taken from the
BOLD5000 data set (Chang et al., 2019), depicting an equal
proportion of indoor and outdoor scenes. Two hundred
eighty face images were taken from the Flickr Faces HQ
data set (Karras, Laine, & Aila, 2021) and were resized to
375 × 375 pixels, to fit the scene images’ size. Face images
depicted an equal proportion of male and female faces.
Faces’ age ranged from infants to elderly adults, while pay-
ing special attention to inclusivity in race representation.
Each participant viewed 200 scene images and 200 face
images from these data sets. Participants viewed each
image once throughout the experiment.

Experimental Design and Procedure

In the main perception stage of the experiment, partici-
pants viewed images at their own pace, free from temporal
or task constraints. This stage of the experiment com-
prised 400 images, divided into four blocks. Each trial
began with a 1-sec presentation of a fixation cross,
followed by a 1-sec presentation of a “same” or “switch”
cue. The cue was followed by another 1-sec fixation cross
presentation, after which the image appeared at screen
center until the participant pressed a key, or until 10 sec
have passed. The fixation cross remained superimposed
on the images at screen center to minimize eye move-
ments. Participants were instructed to maintain fixation
whenever the fixation cross is visible. This was designed
to minimize EEG artifacts and enable the spatio-temporal
pattern similarity (STPS) analysis (see STPS Analysis
section below).
Half of the images repeated the preceding image’s cat-

egory, and half were of a category change. In 70% of the
trials, the cue was valid, leading to a predicted category
repetition or change, and in 30% of the trials, the cue
was invalid, leading to an unpredicted category repetition
or change. In total, the experiment involved four image
conditions in each image category (face/scene): unex-
pected category change, unexpected category repetition,
expected category change, and expected category repeti-
tion. This was designed to dissociate top–down expecta-
tions from bottom–up sensory change. Participants were
explicitly informed that the cue was presented to help
them predict the upcoming image’s category, but that
they are free to view the image for as long as they wish,
once the image is presented. At the end of each block, par-
ticipants were given a break and were asked to resume the
experiment at their own pace. The main perception stage
was followed by a memory stage, which is succinctly ana-
lyzed in the Appendix.

Trial Exclusion Criteria

Participants had 10 sec to make their decision to move on
to the next image, after which the screen automatically
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transitioned to the next trial. Trials that reached this 10-sec
boundary without a participant’s response were excluded
from all analyses (mean = 6.05 trials per person, range =
0–29). In addition, the first trial in each block was excluded
from all analyses, as, by design, these trials did not belong
to a specific context/expectations condition, but rather set
the condition for the subsequent trial. This resulted in
excluding four additional trials from each participant’s
data.

Statistical Analyses Scheme

To achieve our primary aim—to uncover the neural under-
pinnings of self-paced perceptual behavior, we computed
two sets of correlational analyses. First, we computed cor-
relations between pupillary and EEG-related measure-
ments and the serial order of images, which was found
to influence viewing durations (see Results section). Con-
sidering that serial order is not normally distributed,
Spearman correlations were computed. In parallel, we
computed Pearson correlations between pupillary and
EEG-related measurements and spontaneous self-paced
viewing duration, after controlling for serial order by
using a linear regression approach. All correlations were
first computed at the within-individual level and were
followed by group-level analyses. To achieve our second-
ary aim—to test whether context and expectations
influence self-paced behavior and its neural correlates,
within-subjects, two-way, repeated-measures ANOVA anal-
yses were employed, implementing Context and Expecta-
tions as the independent variables and the neural and
pupillary measurements as the dependent variables.
Below, we elaborate each statistical analysis, as well as
the steps taken to control for multiple comparisons where
relevant, separately for the behavioral, pupillary, and EEG-
related analyses.

Behavioral Analyses

The influence of image condition on viewing duration was
assessed using a repeated-measures, three-way ANOVA
across participants, with Image Category, Context, and
Expectations as independent variables and viewing dura-
tion as the dependent variable.
The influence of serial order on viewing duration was

assessed by comput ing Spearman corre la t ions
between serial order and viewing duration individually
for each participant. The effects were evaluated both at
the single-subject level (as the number of participants
showing a significant correlation) and at the group
level (by a Wilcoxon signed-ranks test on correlations
against 0). In addition, a linear mixed-effects model was
conducted to assess the influence of serial order on
viewing duration.
To test for consistency in content-specific effects

between the fixed and random data sets, images were first
sorted according to their group-mean viewing duration in

the fixed data set (divided to four groups: shortest, short,
long, and longest). We then assigned each image in each of
the four viewing-duration groups its mean viewing dura-
tion across participants in the random data set, in which
image order was randomized across participants. This
was followed by a one-way ANOVA examining whether
these image groups are significantly different from one
another in viewing duration.

Two luminance-related analyses were performed
as well, to control for potential low-level effects.
Using the SHINE (Spectrum, Histogram, and Intensity
Normalization and Equalization) toolbox (Dal Ben,
2023), each image’s luminance was computed. The cor-
relation between luminance and mean viewing duration
across participants for a particular image was computed.
In addition, correlations in viewing duration across
images between participants were computed, with the
rationale that a consistent effect of luminance on viewing
duration will result in high correlations between
participants.

Eye-tracking Recording

Eye-tracking for both eyes was conducted using an SR
Research Eyelink +1000 system (1000 Hz). To stabilize
head position, a head post with chin and forehead rest
was used. Nine-point calibration and validation were done
at the beginning of each block as well as at the beginning of
the memory stage.

Pupil Size Analysis

To characterize pupil size dynamics, all pupil size
responses were first averaged across all participants.
Evoked pupil size responses were baseline corrected to
the 1000-msec prestimulus time window, in line with prior
protocols (Oliva, 2019; Zhao et al., 2019; Zekveld,
Heslenfeld, Johnsrude, Versfeld, & Kramer, 2014). Pupil
size constriction started at ∼300 msec after stimulus onset
and was maximal between 700 and 900 msec, after which
the pupil gradually dilated again. Considering these
dynamics, subsequent analyses focused on baseline pupil
size in the prestimulus time window (−1000:0 msec), the
onset time window (700:900 msec), and the offset time
window (−400:0 msec before offset), as well as on pupil
size changes from prestimulus baseline, as measured at
onset and offset. Because of trial-length variability and to
prevent onset–offset overlap, we imposed an inclusion
criterion such that only trials that were longer than
1500 msec were included in the analysis. Onset, offset,
and prestimulus time-windows that had partially missing
data because of blinks were excluded from the analyses.
Correlations between pupil size measurements and
spontaneous viewing duration or serial order were
computed for each participant, followed by a Fischer
Z transformation and a t test comparison against zero
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at the group level. p Values were false discovery rate
(FDR)-corrected for multiple comparisons.

EEG Recording

One hundred twenty-eight Ag/AgCl actiCAP EEG elec-
trodes (Brain Products GmbH) were placed according
to the International 10–20 localization system. Four
EOG electrodes were placed, two at the outer corner
of each eye and two above and below the left eye. In
addition, two reference electrodes were placed on the
left and right mastoids. Skin was abraded using NuPrep
skin gel before electrode placement. All electrodes were
prepared with ABRALYT HiCl abrasive electrolyte gel
(EASYCAP). Data were collected in DC recording mode
using the BrainAmpDC system (Brain Products GmbH).
Sampling rate was 1000 Hz. The experiment took place
in a dark, electromagnetic interference-shielded,
soundproof room.

EEG Preprocessing

Data were preprocessed using the FieldTrip toolbox
(Oostenveld, Fries, Maris, & Schoffelen, 2011). Raw data
were first segmented at the block level, applying a
0.05-Hz high-pass filter, a 150-Hz low-pass filter, and a
band-stop filter at 60 and 120 Hz to remove line noise.
All filters were applied offline using a symmetrical third-
order Butterworth filter with zero phase shift. This was
followed by detrending, demeaning, and rereferencing
the EEG data to the grand average. Electrodes were then
manually inspected, and missing electrodes were interpo-
lated using a neighboring approach. Basic detrending,
demeaning, and rereferencing were done separately for
EOG data after which EEG and EOG data were appended.
Semi-automated jump and muscle artifact removal were
carried out before running independent component anal-
ysis (ICA), which was applied to all EEG and EOG data.
Subsequent artifact removal was done manually, inspect-
ing for each participant the top number of components
that explained > 90% of the variance. After removing
ICA components considered to be artifacts, data were seg-
mented into trials, from 1000 msec before stimulus onset
to trial offset, and a low-pass filter at 35 Hz was applied to
the epoched data, covering the delta-to-beta range. Faulty
trials with discontinuous timeseries were inspected and
removed. Subsequent analysis was done using custom
written scripts in MATLAB (The MathWorks).

ERP Analysis

To qualitatively compare ERP activity between short and
long trials, ERPs were averaged across each participant’s
shortest 25% of trials and longest 25% of trials (using only
trials longer than 1000 msec to avoid onset–offset over-
lap). Activity in each trial was baseline-corrected to the
500-msec prestimulus time window (Douglas, Maniscalco,

Hallett, Wassermann, & He, 2015). The time series of these
upper and lower quartiles were averaged across participants,
at trial onset (first 600 msec) and offset (last 400 msec).
Whole-brain layout was divided into 12 spatial regions, in line
with past work (Harel, Groen, Kravitz, Deouell, & Baker,
2016), and ERPs for each region are plotted.
Next, to characterize temporal dynamics of ERP’s corre-

lation with behavior, EEG activity was averaged across all
trials in the onset and offset timewindows, although incor-
porating only trials longer than 1000 msec to prevent
onset–offset overlap. ERPs were then averaged in the
onset and offset time windows in 50-msec time bins to
obtain a less noisy measurement of neural activity. Corre-
lations were computed separately for each participant,
between ERP and absolute ERP magnitude at each time
window/electrode and spontaneous viewing duration
(Pearson correlation) or serial order (Spearman correla-
tion). At the group level, correlation values at each elec-
trode and timepoint were then Fisher z-transformed and
compared against zero using a one-sample t test.
Subsequently, to examine the earliest latency of the

correlation between spontaneous viewing duration and
absolute ERP, ERPs were averaged across electrodes at
each time bin and correlated with spontaneous viewing
duration. At each time bin, correlations were Fisher
z-transformed and compared against zero at the group
level. Significance was evaluated by running a nonpara-
metric cluster permutation test by shuffling the spontane-
ous viewing duration labeling at each iteration. p Value was
calculated as the proportion of the randomized test statis-
tic that exceeded the observed cluster’s sum of statistic
values (one-tailed test).

Time–frequency Analysis

First, evoked power changes at image onset were charac-
terized in the first 1000 msec of each trial and baseline-
corrected using the −700:−200-msec prestimulus
window. The 500-msec baseline window was shifted to
end 200 msec before stimulus onset, to avoid temporal
smearing between prestimulus and poststimulus activity
(Min & Herrmann, 2007). This revealed a rapid increase
in theta (4–8 Hz) power followed by a long-lasting alpha
(8–13 Hz) power decrease in response to image onset,
most prominent in posterior electrodes. On the basis of
this onset response, we then tested whether the evoked
power changes are modulated by spontaneous viewing
duration or serial order, by correlating them with theta
power (non-baseline-corrected) and theta power change
(baseline-corrected; obtained from the 0:250-msec time
window), alpha power and alpha power change
(250:850-msec time window), and beta power and beta
power change (15–25 Hz at the 250:850-msec time
window). Each trial’s power measurement was averaged
across the relevant time window and frequency range
across the 40 most posterior electrodes: P010, PP010h,
PO8, TPP10h, P8, P6, TPP8h, TP10, CPP6h, P2, P4,
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PP02h, PO4, P002, O2, OI2h, I2, POO10h, P09, PP09h,
PO7, TPP9h, P7, P5, TPP7h, TP9, CPP5h, P1, P3, PP01h,
PPO5h, PO3, P001, O1, OI1h, I1, POO9h, Pz, POz,
and Oz. p Values were FDR-corrected for multiple
comparisons.

Power Spectrum Analysis

Power spectrum analysis was conducted in the 1000-msec
prestimulus window of each trial. Correlations were com-
puted between serial order or spontaneous viewing dura-
tion and power in each frequency bin and each electrode.
At the group level, correlations were Fisher z-transformed,
and a t test against zero was conducted.

STPS Analysis

To estimate temporal neural stability at the trial level,
single-trial, baseline-corrected ERPs were averaged in
50-msec time bins and correlations in whole-scalp neural
activity pattern were computed between each time bin
and all other bins in the trial, yielding an n-Bins by n-Bins
STPS matrix. The size of each STPS matrix depended on
the trial’s length. Subsequently, an inclusion criterion
was applied such that trials longer than 2500 msec were
included in the following analyses.
We next used a 200-msec window sliding across the

STPS matrices’ diagonal from 0 to 2500 msec after image
onset and averaged the correlations within the sliding
window to obtain a “STPS index.” For each participant,
we calculated the correlation between the STPS index
from each sliding window and spontaneous viewing dura-
tion. At the group level, correlations at each time window
were Fisher z-transformed and were compared against
zero. Significance was evaluated by a nonparametric
cluster permutation test while shuffling the spontaneous
viewing duration labeling at each iteration. Significance
was calculated as the proportion of the randomized test
statistic that exceeds the observed cluster’s sum of statistic
values. This revealed the cluster of timepoints in which the
correlation between neural stability, as indexed in the
STPS, and spontaneous viewing duration is significantly
above chance.
In addition, for each participant, we computed the

mean STPS for the onset (first 800 msec), middle (middle
800 msec), and offset (last 800 msec) parts of each trial.
This matrix was averaged across trials for each partici-
pant. A group-level, repeated-measures, one-way ANOVA
was run to examine differences in neural stability
between the onset, offset, and middle trial parts. Subse-
quently, participants’ across-trial mean STPS in each trial
partition was correlated with their mean spontaneous
viewing duration to examine if STPS could predict the
overall propensity of a participant to view images longer
or shorter.

RESULTS

The Duration of Spontaneous, Self-paced
Perception Is Influenced by Serial Order and by
High-level Image Category

Behavioral analysis revealed that participants in the
random data set viewed scenes significantly longer
than they viewed faces, F(19, 1) = 15.33, ηp

2 = .44, p <
.001 (Figure 1C, top), and this result was replicated
in the fixed data set, F(17, 1) = 12.63, ηp

2 = .42, p <
.002 (Figure 1C, bottom). Beyond image category,
whether the image changed in category from the previous
image (i.e., bottom–up context change) and whether that
category change or repetition was expected (i.e., top–
down expectations) did not significantly influence viewing
durations (context: p > .66; expectations: p > .76).

In addition to image category, viewing duration showed
a significant negative correlation with serial order, such
that images presented earlier in the experiment were
viewed for longer durations. In the random data set, 17
out of 20 participants showed a significant correlation
between serial order and viewing duration, 14 of which
were negative (the correlation is also significant at the
group level: p < .03, Wilcoxon signed-ranks test across
participants; Figure 1D). In the fixed data set, 17 out of
18 participants showed a significant correlation between
serial order and viewing duration, 16 of which were nega-
tive (group-level effect: p < .003, Wilcoxon signed-ranks
test). Linear mixed-effects model of viewing duration by
serial order likewise showed a significant effect (random
data set: β = −1.65, SE = 0.15, t = −11.65, p < 4.13e-
31; fixed data set: β = −3.38, SE = 0.16, t = −22.19,
p < 1.75e-105).

We next examined whether specific image content,
independently from image category, had a consistent
effect on viewing durations across participants. To this
end, we examined whether viewing durations of the
images in the fixed data set were consistent with viewing
durations of the same images in the random data set.
Images in the fixed data set were sorted into four
viewing-duration groups according to their group-mean
viewing duration. We then tested whether viewing dura-
tion differed between these four groups in the random
data set, which revealed a null result (faces: p> .99 scenes:
p > .97, one-way ANOVA; Figure 1E). This suggests that
content-specific effects on viewing duration are idiosyn-
cratic and differ between individuals.

A further control analysis examined whether luminance
influenced viewing duration. We computed mean lumi-
nance of each image using the SHINE toolbox (Dal Ben,
2023). Overall, scenes’ luminance (m = 45.23, SE =
0.01) was significantly lower than faces’ luminance (m =
49.25, SE = 0.1; t = 5.96, p = 4.2489e-09). However, the
correlation between image’s viewing duration across
participants and luminance was not significant for face
images (rho = −0.05, p = .37) or scene images (rho =
−0.08, p = .15). In addition, we computed correlations
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in viewing duration across images between participants,
for the reason that if luminance consistently influences
viewing duration, viewing durations should be signifi-
cantly correlated between participants across images.
Mean rho values for correlations computed between each
pair of participants was 0.02, both when computed across
face images and when computed across scene images.
Thus, luminance by itself does not appear to influence
viewing duration.

Spontaneous Viewing Duration Is Selectively
Correlated with the Magnitude of ERPs

The behavioral analysis showed that beyond idiosyncratic
observer-dependent factors likely related to the
salience/significance of the specific image to the specific
observer, self-paced viewing duration is influenced by
serial order. In search for the neural mechanisms related
to spontaneous self-paced behavior independent from
serial order, we ran a regression analysis on viewing dura-
tion as a function of serial order and used the residuals of
this regression as a proxy for spontaneous viewing dura-
tion with the influence of serial order removed. We first
examined whether there is evidence showing that ERP
activity is modulated by viewing duration. Next, we identi-
fied EEG activity features that correlated with either spon-
taneous viewing duration (hereafter referring to the
regression residual—individual viewing duration unex-
plained by serial order) or with serial order (i.e., an image’s
sequence position within the overall experiment).

To qualitatively probe the potential relationship
between viewing duration and ERP activity, we compared
each participant’s evoked responses in the shortest 25%
and longest 25% of trials, and this comparison showed that
a difference in ERP amplitudes between short and long tri-
als emerged after ∼300 msec from image onset. Although
the very early ERP components (e.g., P1, N1, and P2) do
not seem to be modulated by viewing duration, at subse-
quent timepoints, increased anterior negativity and
increased posterior positivity are observed for long
compared with short trials (Figure 2A). At trial offset, the
difference in ERP amplitudes between short and long
trials increased, primarily in anterior and posterior sites
(Figure 2B). These qualitative observations demonstrate
that longer viewing durations may be associated with
stronger late ERP components at image onset, as well
as with a slower return to baseline at image offset. Next,
the relationship between viewing duration and ERP
amplitudes was assessed on a trial-by-trial basis. For each
participant, we computed the correlation between ERP
amplitude, in each electrode and at each timepoint dur-
ing onset and offset, and spontaneous viewing duration.
This was followed by Fisher z transformation and a
group-level t test comparison against zero, to test for sig-
nificance at each timepoint and electrode (see Figure 2C
for a schematic illustration). This showed that longer
spontaneous viewing duration is associated with

increased anterior negativity and increased posterior pos-
itivity at offset (the last 400 msec of each trial; Figure 2D).
As seen in Figure 2, an overall consistent posterior–

anterior division was observed, with positive ERPs in pos-
terior regions and negative ERPs in anterior regions, and
the strength of the evoked responses changed over time.
We next computed the absolute ERP strength, which suc-
cinctly summarizes the posterior–anterior activation pat-
tern, and quantified its temporal dynamics (Figure 3A).
The computation of absolute ERP strength is similar to
computing “global field power” index (Zanesco, 2020),
which reflects the electric field’s power, yet is focused
on amplitude rather than power.
For each participant, we computed the correlation

between absolute ERP amplitude in each electrode and
at each timepoint at the first 600 msec and at the last
400 msec of each trial, with serial order, and separately
with spontaneous viewing duration. This analysis did not
reveal a significant correlation between ERP amplitude
and serial order (Figure 3B). However, absolute ERP
amplitude significantly correlated with spontaneous view-
ing duration and this correlation gradually increased over
time within a trial (Figure 3C). To reveal how early this
correlation emerges at image onset, we averaged absolute
ERP amplitude across all electrodes and examined its
correlation with spontaneous viewing duration for each
participant before conducting a population-level test
(one-sample t test on Fisher z-transformed correlation
values). This analysis revealed that a significant correlation
between absolute ERP amplitude and spontaneous view-
ing duration emerged as early as 150 msec after image
onset (random data set: p < .0001, cluster-based permu-
tation test; Figure 3D; fixed data set: p < .0001; cluster-
based permutation test). Again, no correlation was found
between serial order and absolute ERP amplitude. Lastly,
this analysis was conducted again separately for face and
scene images, to test for potential category-specific
effects. The findings showed that the correlation between
absolute ERP strength and spontaneous viewing duration
significantly increases following image onset for both face
and scene images, suggesting that this effect generalizes
across image categories (Figure 3E).

Serial Order Is Selectively Correlated with
Alpha Power

Next, we assessed the relationship between spontaneous
viewing duration/serial order and EEG power changes. We
first characterized band-limited power changes at trial
onset, defined as the first 1000 msec after the onset of
a new image. Grand-average time–frequency power
changes (averaged across all trials, electrodes, and partic-
ipants) revealed that image onset triggered an immediate
increase in theta (4–8 Hz) power within 250 msec,
followed by a long-lasting reduction in alpha power
(8–13 Hz), and both features were most pronounced in
posterior electrodes (Figure 4A).
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Informed by this time–frequency domain characteriza-
tion, we then examined whether spontaneous viewing
duration and, separately, serial order modulated the
onset-related power change response, by correlating

these two metrics with band-limited power in the theta
(4–8 Hz, averaged in the time window 0–250 msec),
alpha (8–13 Hz, 250–850 msec), and beta (15–25 Hz,
250–850 msec) ranges in posterior electrodes (see

Figure 2. ERP comparison between short and long trials: (A) Onset ERPs. Top: ERPs of short (shortest 25%, light purple) and long (longest 25%, dark
purple) trials, averaged across participants over the first 600 msec of viewing duration, and divided to 12 spatial regions. Bottom: ERP topography of
short and long trials in selected time windows (left: 75–125 msec from image onset, right: 450–500 msec from image onset). (B) Offset ERPs. ERPs of
short (shortest 25%, light purple) and long (longest 25%, dark purple) trials, averaged across participants over the 400 msec preceding image offset,
divided to 12 spatial regions. Bottom: ERP topography of short and long trials in a selected time window of 200–150 msec before image offset. The
difference between short and long trials is primarily apparent before trial offset. *ERPs are averaged across all trials longer than 1000 msec. Shaded
gray areas indicate the selected time windows for topo plots. (C) Schematic illustration of trial-by-trial analysis of the correlation between ERPs and
spontaneous viewing duration. At the participant level, ERPs at each time point and electrode (pink shaded region) were correlated with spontaneous
viewing duration across trials. At the group level, at each time point and electrode, participants’ array of correlations was Fisher z-transformed and
compared against zero using a one-sample t test. (D) Topography of the t statistic of the group level t test comparison against zero, averaged across
the offset’s 400-msec time window.
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Methods section for the list of posterior electrodes). This
analysis showed that serial order significantly correlated
with alpha power, such that greater alpha power was mea-
sured as the experiment progressed (random data set:
alpha: rho = 0.15, t= 4.47, p< .002, Figure 4B top; fixed
data set: alpha: rho = 0.23, t = 6.61, p < 4.41e-04; FDR-
corrected). Power in the theta and beta range correlated
with serial order in the fixed data set (theta: rho = 0.15,

t = 4.16, p < .002; beta: rho = 0.20, t = 3.36, p < .008;
FDR-corrected) but not in the random data set (both
p > .08); as such, we do not emphasize this finding
henceforth. The above results were obtained using raw
power averaged within each frequency band and the
respective time window. For image onset-related
power changes (i.e., baseline corrected to a time window
200–700 msec before image onset), no significant

Figure 3. Spontaneous viewing duration selectively correlates with absolute ERP amplitude. (A) Mean absolute ERP at onset averaged across all
electrodes, trials, and participants. Shaded area depicts SEM across participants. Topographies depict the spatial distribution of ERP amplitude at each
time window (indicated by gray shading), baseline corrected to the prestimulus 500-msec time window. ERPs are averaged across all trials longer than
1000 msec. (B) Group mean correlations between absolute ERP amplitude and serial order. (C) Group mean correlations between absolute ERP
amplitude and spontaneous viewing duration. Correlations are computed over the onset (0:600 msec after image onset; left columns) and offset
(−400:0 msec before image offset; right columns). (D) Individual correlations between absolute ERP at onset, averaged across all electrodes, and
spontaneous viewing duration across all trials. (E) Individual correlations between absolute ERP at onset, averaged across all electrodes, and
spontaneous viewing duration, separately for face (blue) and scene (green) images. In both D and E, shaded area depicts the SEM across participants.
At the group level, correlations between absolute ERP and spontaneous viewing duration are significant as early as 150 msec after image onset
(horizontal gray bar: p < .0001, assessed by cluster-based permutation tests).
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correlation with serial order was found. In contrast, spon-
taneous viewing duration did not correlate with any of the
power metrics in either data set (results from the random
data set shown in Figure 4B bottom).

We further probed whether the association found
between serial order and alpha power is specific to
image onset or rather a stimulus-independent process,
by computing the power spectrum for each electrode in
the 1-sec prestimulus time window (i.e., fixation period
between cue offset and image onset; see Figure 1A), and
correlating it with the image’s serial order. This analysis
revealed that prestimulus alpha power uniquely corre-
lates with serial order before image onset, in a spatially
nonspecific manner (Figure 4C). This result is consis-
tent with prior observations showing a gradual increase
in alpha power over the course of the experiment and
extends these findings to naturalistic, task-free settings
(Arnau, Brümmer, Liegel, & Wascher, 2021; Benwell
et al., 2019).

Together, our EEG analyses point to a double dissoci-
ation between the neural correlates associated with idi-
osyncratic spontaneous viewing duration variations and
those associated with serial order. Spontaneous viewing
duration is correlated with ERP amplitudes as early as
150 msec after image onset, and serial order is selec-
tively correlated with alpha power that gradually
increases across the experiment. Although the alpha
power finding is expected from previous literature, the
finding that ERP amplitudes shortly after image onset
predict spontaneous viewing duration (typically in the
range of 2–5 sec; see Figure 1C) is surprising. The
default explanation for such early neural effects is that
they reflect bottom–up, image-related salience associ-
ated with low-level image features (such as contrast);
however, if that were the case, spontaneous viewing
duration should be correlated across participants, a sce-
nario ruled out by our earlier behavioral and luminance
analyses. Therefore, individual-specific, image-level
effects can be seen in the evoked ERP responses, and
the full mechanisms of this effect remain to be unveiled
by future studies. One possibility is the influence of
prestimulus spontaneous activity (McCormick, Nestvogel,
& He, 2020; Podvalny, Flounders, King, Holroyd, & He,
2019; Baria, Maniscalco, & He, 2017; Sadaghiani, Poline,
Kleinschmidt, & D’Esposito, 2015).

Dissociable Pupillary Correlates of Spontaneous
Viewing Duration and Serial Order

In parallel to the behavioral task and the EEG measure-
ments, we tracked pupil size dynamics, with the aim to
uncover the pupillary correlates of task-free, self-paced
perceptual durations. We first characterized pupil
response at image onset (Figure 5A). Pupil constriction
started at ∼300 msec after stimulus onset, which was max-
imized at 700–900 msec (Figure 5A, blue shaded area),
after which the pupil began to dilate again. Following this

Figure 4. Serial order selectively correlates with baseline alpha power:
(A) time–frequency analysis of the first 1000 msec from onset, baseline
corrected to the−700:−200-msec prestimulus time window, showing an
immediate increase in theta power (4–8 Hz, yellow frame) followed by
a long-lasting decrease in alpha power (8–13 Hz, blue frame). Right:
topographies of onset-related power changes in the theta range, in
the 0:250-msec window (yellow frame) and in the alpha range in the
250:850-msec time window (blue frame). (B) Correlations between
power (i.e., non-baseline-corrected) as well as power changes (i.e.,
baseline-corrected to −700:−200-msec prestimulus window) and serial
order (top) or spontaneous viewing duration (bottom). On the basis
of the finding in A, correlations were computed for theta (4–8 Hz at
0:250 msec), alpha (8–13 Hz at 250:850 msec), and beta (15–30 Hz at
250:850 msec) ranges. Boxes denote 50% of central data (between the
first and third quartiles). Dark lines in the boxplots indicate the median.
**p < .01, FDR-corrected. (C) Frequency-resolved correlation analysis
between power in the 1-sec prestimulus time window and serial order,
depicting significant correlations at the group level ( p< .05, uncorrected).
Topo plot (green frame) depicts rho values of the Spearman correlations
between prestimulus activity in the 7- to 9-Hz range and serial order.
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characterization, we measured the correlations between
serial order and, separately, spontaneous viewing duration
with five pupillary metrics: baseline pupil size at the pres-
timulus time window (1 sec before image onset), pupil
size at image onset (between 700 and 900 msec after
onset), pupil size at image offset (from −400 to 0 msec
before stimulus offset), and pupil size change from the
prestimulus time window as measured at image onset
and image offset (see Methods section for details).
Serial order exhibited a robust negative correlation with

pupil size measured at the prestimulus window, and dur-
ing image onset and offset (random data set: prestimulus:
rho =−0.21, t=−2.58, p< .04; onset: rho =−0.19, t=
−2.40, p < .04; offset: rho = −0.20, t = −2.93, p < .03;
Figure 5B top; fixed data set: prestimulus: rho =−0.21,
t = −2.56, p < .04; onset: rho = −0.18, t = −2.64, p <
.04; offset: rho = −0.22, t = −3.46, p < .02; FDR-
corrected). However, image-elicited pupil size changes,
measured either at onset or offset, did not exhibit a con-
sistent relation with serial order (random data set: onset
change: rho = 0.17, t= 3.06, p< .03; offset change: p>
.39; fixed data set: onset change: p> .12; offset change:
p > .79; FDR-corrected).
By contrast, spontaneous viewing duration positively

correlated with pupil size measured at offset whether cor-
rected by prestimulus baseline or not (random data set:
offset: r = .13, t = 3.48 p < .007; offset change: r = .14,
t = 4.92, p < .0006; Figure 5B bottom; fixed data set: off-
set: r= .23, t= 3.48 p< 6.68e-04; offset change: r= .28,
t = 7.99, p < 3.65e-04, FDR-corrected). Spontaneous
viewing duration did not correlate with any other pupil
metrics with the exception of pupil size change mea-
sured at onset which, however, only showed a signifi-
cant correlation in one of two data sets (fixed data set:
r = .08, t = 3.42, p < .006; random data set: p > .97).
Together, these analyses point to another double disso-

ciation between the mechanisms associated with serial
order and those associated with spontaneous viewing
duration: Although serial order is predominantly corre-
lated with baseline pupil size irrespective of timing
(whether before or after image onset), spontaneous view-
ing duration (independent of order) is primarily correlated
with pupil size change from prestimulus baseline, mea-
sured at stimulus offset. The fact that the latter effect
was evident at image offset but not onset is likely because
of evoked pupil responses being relatively slow and taking
time to develop.

Neural Activity and Pupil Dynamics Independently
Contribute to Serial Order and to Spontaneous
Viewing Duration

Thus far, our findings show that spontaneous viewing
duration (with the effect of serial order removed) is asso-
ciated with ERP amplitudes and pupil size changes. We
also found that serial order is associated with baseline
alpha power and pupil size. We next sought to elucidate

Figure 5. Pupillary correlates of task-free, self-paced perception. (A)
Pupil size response measured within the first 1 sec after image onset,
baseline-corrected to the 1-sec prestimulus window. The black line
depicts grand average, and the shaded area depicts SEM across
participants. Pupil constriction is maximal at 700:900 msec after image
onset (pale blue shading). (B) Pupil size metrics differentially correlate
with serial order (top) and spontaneous viewing duration (bottom).
Pupil size (bright boxplots) was measured in the prestimulus period
(1000-msec time window before onset), at onset (between 700 and
900 msec after image onset) and at offset (from −400 msec to 0 msec
before image offset). Onset and offset pupil size changes (dark
boxplots) were computed by baseline-correcting to the prestimulus
time window. Boxes denote 50% of central data (between the first and
third quartiles). Dark lines in the boxplots indicate the median. (C) Left:
Partial correlations between serial order, alpha power at onset, and
pupil size at onset. Right: Partial correlations between spontaneous
viewing duration, absolute ERP at offset, and pupil size change at offset.
Numbers indicate group-mean partial correlation values. Error bars
depict SEM across participants. *p < .05, **p < .01, ***p < .001.
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whether the neural and pupillary correlates of each behav-
ioral metric are distinct or associated with one another. To
that aim, we conducted two partial-correlation analyses as
described below. For each analysis, we chose EEG and
pupil measures obtained in similar time windows and
examined their correlation with behavior using partial
correlations.
Partial correlation results concerning serial order are

shown in Figure 5C, left. Serial order significantly corre-
lated with alpha power measured at onset when control-
ling for pupil size measured at onset (r= .13, t= 4.37, p<
3.28e-04). Similarly, serial order significantly correlated
with pupil size when controlling for alpha power (r =
−.19, t = −2.31, p < .04). When controlling for serial
order, onset pupil size and onset alpha power did not cor-
relate with each other ( p > .17). These results were rep-
licated in the fixed data set.
Partial correlation results concerning spontaneous view-

ing duration are shown in Figure 5C, right. Spontaneous
viewing duration significantly correlated with absolute
ERP amplitude measured at offset when controlling for
pupil size change measured at offset (r = .38, t = 7.59,
p< 3.58e-07). Conversely, spontaneous viewing duration
significantly correlated with pupil size change while con-
trolling for ERP amplitude (r = .11, t = 3.00, p < .008).
When controlling for spontaneous viewing duration, offset
ERP amplitude and offset pupil size change did not corre-
late with each other ( p> .1). These results were also rep-
licated in the fixed data set.
Together, these analyses suggest that both for serial

order and for spontaneous viewing duration, the neural
correlates and pupillary correlates are independent
from one another and thus likely represent different
neural machinery involved. One possibility is that the
pupillary correlates reflect the activity of subcortical
neuromodulatory systems that our scalp-EEG record-
ings are less sensitive to.

Neural Stability Predicts Spontaneous
Viewing Duration

Inspired by previous work showing that longer viewing
durations are associated with a static viewing style as mea-
sured in eye movement patterns (Zangrossi, Cona, Celli,
Zorzi, & Corbetta, 2021), we predicted that longer viewing
durations are associated with higher stability in neural
activity patterns over time.
To test this prediction, we adapted the STPS analysis

(Sols, DuBrow, Davachi, & Fuentemilla, 2017). The STPS
analysis typically focuses on finding the timepoints at
which two events show the greatest neural similarity in
their spatial activity patterns. This index has been used
in recent years primarily in the realm of memory research
showing that similarity in activity patterns across repeated
presentations of a stimulus is associated with better mem-
ory of that stimulus and is referred to as quantifying repre-
sentational stability across presentations (Sommer &

Sander, 2022; Baena, Cantero, & Atienza, 2021). Here,
we computed the similarity in activity patterns between
each pair of timepoints within a trial, with the rationale
that greater similarity in neural activity patterns between
consecutive timepoints indicates reduced neural change
and greater neural stability.

Briefly, we first computed the correlations between
activity patterns at each time point and all other time points
in a trial, generating a STPS matrix for each trial (Figure 6A
and B). Then, a dynamic STPS index was computed using a
200-msec sliding window (Figure 6C). Subsequently, at
every time window, we computed for each participant the
correlation between spontaneous viewing duration and
STPS index across trials. Given variable trial lengths, we
used an arbitrary inclusion criterion by which only trials
longer than 2500 msec were included in the analyses (cor-
responding to 58% of all trials; control analyses showed that
this cutoff did not significantly impact the results). This
allowed us to identify the specific time points at which STPS
may be associated with spontaneous viewing duration.
Example trials in Figure 6B demonstrate that over the same
time window during image presentation, there is higher
STPS shortly after image onset for longer compared with
shorter trials.

This analysis revealed that STPS significantly correlated
with spontaneous viewing duration as early as 350–
550 msec after image onset ( p < .0001, cluster-based
permutation test; Figure 6D). In the fixed data set, this cor-
relation emerged even earlier, at 200–400 msec after
image onset ( p < .0001, cluster-based permutation test).
This correlation increased with time: Higher neural stabil-
ity was increasingly indicative of longer viewing durations
at later time points in the trial. This result suggests that
after a brief visually evoked response within the first
∼300 msec of image onset, the temporal stability of neu-
ral activity patterns is already a reliable index of the trial’s
eventual duration, with longer trials exhibiting greater
stability compared with shorter trials.

We then sought to examine whether indices of neural
stability also explain interindividual variability in sponta-
neous viewing durations. To that aim, we computed for
each participant their cross-trial mean STPS at different
times of a trial: the onset (i.e., first 800 msec of each
trial), middle (i.e., middle 800 msec of each trial), and
offset (i.e., last 800 msec of each trial; Figure 7A and
B). A group-level , one-way ANOVA showed that
middle-trial STPS was significantly higher than STPS
measured in the onset and offset tr ia l segments ,
F(18, 2) = 12.23, ηp

2 = .57, p < .001 (Figure 7C); fixed
data set: F(16, 2) = 16.36, ηp

2 = .49, p< .0001. In addition,
middle-part STPS was significantly correlated with mean
spontaneous viewing duration across participants, such
that higher STPSwas observed for participants who, on aver-
age, viewed the images for longer durations (Spearman’s
rho= 0.63, p< .004; Figure 7D). The latter result however
did not reach significance in the fixed data set (Spearman’s
rho = 0.27, p = .26).
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Figure 6. Neural stability predicts spontaneous viewing duration: (A) illustration of trial-by-trial computation of STPS. Each trial was binned into
bins of 50 msec, and correlation in neural activity patterns was computed between each pair of time bins. (B) STPS examples of a short trial and a long
trial from one participant. At the same time window, STPS is higher in long compared with short trials. (C) STPS was correlated with spontaneous
viewing duration using a 200-msec sliding window. Because of variable trial lengths, only trials longer than 2500 msec were included in the analysis,
and the correlation between STPS and spontaneous viewing duration was computed over the first 2500 msec of each trial. (D) Left: t statistic of the
group-level analysis showing that starting at the 350- to 550-msec time window, STPS significantly correlates with spontaneous viewing duration
(horizontal gray bar indicates p < .0001, cluster-based permutation test). Right: An example participant’s data showing the correlation between their
spontaneous viewing durations and STPS measured at the time window of 2300–2500 msec after image onset across trials.

Figure 7. Between-participants
differences in neural stability
are associated with differences
in spontaneous viewing
duration: (A) examples of two
participants’ average STPS
within and across non-
overlapping onset (first
800 msec), middle (middle
800 msec), and offset
(last 800 msec) segments of the
trials. (B) Group mean STPS for
each trial segment. (C) One-way
ANOVA shows that middle-part
STPS was significantly higher
than STPS at onset or offset.
***p < .001. (D) Scatter plot
depicting the significant
correlation between middle-
part STPS and viewing duration
across participants. Participants
who exhibited longer viewing
duration, on average, also
exhibited greater middle-part STPS.
This correlation was not found
with onset or offset STPS.
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Together, these results show, for the first time to our
knowledge, that neural stability predicts spontaneous
self-paced perceptual behavior. Both within and across
individuals, higher neural stability at an early latency
(∼350 msec after image onset) is associated with longer
eventual viewing durations. Because spontaneous viewing
durations investigated here are dissociated from serial
order and have been shown to have idiosyncratic varia-
tions across individuals (see our earlier behavioral analy-
sis), these results suggest that contextual factors unique
to each individual (e.g., prestimulus spontaneous activity
and memories) can influence neural activity at an early
processing stage, to influence spontaneous perceptual
behavior.

Predictions Modulate Onset-related
Neurophysiological Dynamics

Finally, to address our secondary aim, we tested whether
bottom–up and top–down predictive factors influenced
the duration of self-paced perceptual behavior and, if so,
its corresponding neural correlates. As reported in the
behavioral results section, bottom–up contextual changes
as well as top–down expectations did not significantly
influence spontaneous viewing duration (context: p >
.66; expectations: p> .76; see Results section). Neverthe-
less, further analysis showed that expectations did modu-
late alpha power change at stimulus onset, such that a
greater power decrease from baseline in the alpha range
was measured for unexpected compared with expected
stimuli, F(19, 1) = 6.13, ηp

2 = .24, p < .03 (Figure 8A),
consistent with earlier studies (Bridwell, Henderson,

Sorge, Plis, & Calhoun, 2018; Chao, Takaura, Wang, Fujii,
& Dehaene, 2018; Rungratsameetaweemana, Itthipuripat,
Salazar, & Serences, 2018; van Driel, Ridderinkhof, &
Cohen, 2012). An additional interaction between context
and expectation emerged, F(19, 1) = 6.53, ηp

2 = .25, p <
.02, such that unexpected change, which involves lack of
predictability from both bottom–up contextual change
and top–down expectation violation, triggered the largest
decrease in alpha power, unexpected change vs. unex-
pected repetition: t(19) = −1.96, p < .04, Cohen’s d =
0.44; unexpected change vs. expected change: t(19) =
−2.99, p< .004, Cohen’s d=0.67. Analysis of onset-related
pupil size change revealed similar results. Context and
expectations interacted in their influence on pupil size
change at onset, F(19, 1) = 10.67, ηp

2 = .36, p < .004
(Figure 8B). The largest pupil size onset change (i.e.,
the greatest pupil constriction) was found under condi-
tions of unexpected context change, unexpected change
vs. unexpected repetition: t(19) = −2.82, p < .005,
Cohen’s d = 0.63; unexpected change vs. expected
change: t(19) = −3.82, p < .001, Cohen’s d = 0.85.

Integrating our results here with past research showing
that predictions take a central and early role in perception
(Summerfield & de Lange, 2014; Kok, Brouwer, van
Gerven, & de Lange, 2013; Bar, 2004), we propose that
predictions may primarily be used for facilitating
immediate image recognition and categorization pro-
cesses (Hardstone et al., 2021; Press, Kok, & Yon,
2020; Kaiser, Quek, Cichy, & Peelen, 2019; O’Callaghan,
Kveraga, Shine, Adams Jr., & Bar, 2017). At longer time-
scales, however, a more complex and dynamic set of
factors may come into play.

Figure 8. Predictions modulate onset-related neurophysiological changes. (A) Alpha power change measured at onset (mean across 8–13 Hz, at
250 msec:850 msec from image onset in posterior electrodes, baseline corrected to the −700:−200-msec prestimulus time window) was significantly
larger under conditions of unexpected (right bars) compared with expected (left bars) images. Unexpected change triggered the largest alpha-power
decrease. (B) Pupil size change measured at onset (mean pupil size between at 700:900 msec from image onset, baseline corrected to the
prestimulus 1000-msec time window) was significantly larger under conditions of unexpected change. Boxes denote 50% of central data (between
the first and third quartiles). Black lines in the boxplots indicate the median. *p < .05, **p < .01, ***p < .001.
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DISCUSSION

Everyday visual experiences are spontaneously self-paced
by humans as agentic observers. Yet, most laboratory stud-
ies predetermine participants’ percept durations, limiting
the temporal variability that is inherent in naturalistic
environments. Here, by allowing for individual temporal
variability, we reveal several key findings regarding the
neurophysiological mechanisms determining the duration
of self-paced spontaneous image viewing. First, we found
that viewing duration is heavily influenced by serial order
and image category, but not significantly predicted by the
specific image content at the group level or by image lumi-
nance. Second, stronger late ERPs, involving an anterior
negativity and a posterior positivity, were found for long
compared with short viewing durations. Importantly, after
controlling for serial order, spontaneous viewing duration
was strongly correlated with the amplitude of the ERP
response and with pupil size change that develops slowly
after image onset. These were doubly dissociable from
the neurophysiological mechanisms associated with an
image’s serial order—baseline alpha power and baseline
pupil size that slowly varied across the entire experiment.
Third, as early as 350 msec after image onset, higher neural
stability predicted longer spontaneous viewing duration.
Finally, contrary to our prior hypothesis, predictive factors
had no significant effects on spontaneous viewing durations
in this task. Below, we discuss the main findings.

Serial order, the position of an image within the exper-
iment, strongly influenced viewing durations. Serial order
was associated with an increase in baseline alpha power,
corroborating recent studies showing that compared with
other frequency bands that remain stable over time, alpha
power increases with time on task (Benwell et al., 2019).
Serial order was also correlated with baseline pupil size,
which decreased over time. The observed increases in
alpha power and decreases in pupil size over the course
of the experiment were nonspecific in time, manifesting
in the prestimulus window, image onset, and image offset
periods. Thus, we interpret them to signify slow changes
in observer state, such as reduced novelty or decreased
arousal with increased time on task.

Controlling for serial order allowed us to pinpoint the
neural correlates underlying spontaneous variations in
viewing duration. Spontaneous viewing duration dynami-
cally correlates with the magnitude of the ERP response,
such that stronger, late-latency ERPs were measured at
onset for trials that would be viewed for longer. The cor-
relation between ERP amplitude and spontaneous viewing
duration increasingly strengthened toward image offset,
where spontaneous viewing duration was correlated with
increased anterior negativity and increased posterior
positivity. Increased fronto-central negativity has been
documented in the past, often attributed to the contingent
negative variation (CNV; Walter, Cooper, Aldridge,
McCallum, & Winter, 1964). The CNV is a negative centro-
frontal component that emerges after several hundred

milliseconds from stimulus onset, and has been primarily
associated with temporal expectancy (Boettcher, Stokes,
Nobre, & van Ede, 2020;Walter et al., 1964) andpreparatory
attention (Funderud et al., 2012). However, the negative
activity’s topography observedhere (see Figure 2D) ismore
anterior than the typically observed centro-frontal CNV
topography (Damsma, Taatgen, de Jong, & van Rijn, 2020;
Funderud et al., 2012; Ng, Tobin, & Penney, 2011). In addi-
tion, CNV topography typically has one anterior midline
focus (Nobre & van Ede, 2018) rather than two bilateral foci
observed here (Figure 2D). It is possible that a different,
slowly evolving component belonging to the slow cortical
potential (SCP) family (He & Raichle, 2009; Khader,
Schicke, Röder,&Rösler, 2008; Birbaumer, Elbert, Canavan,
& Rockstroh, 1990) contributes to the ERP findings
depicted here, one that is associated more with agentic
engagement, rather than with anticipating the duration of
externally generated temporal intervals.
In parallel, considering that the peak amplitudes of

early onset-related ERP components (e.g., P1) were not
higher for longer compared with shorter viewing dura-
tion, extended agentic engagement with an image is
likely sustained by a different neural process, reflected
in the slower decay rate of the late-latency evoked neural
activity.
Cognitively, the association between sustained ERP

amplitudes and spontaneous viewing duration may also
reflect changes in a deeper, more fine-grained or asso-
ciative engagement with the image that takes place after
the initial, swift gist-level processing (Baror & He, 2021;
Campana, Rebollo, Urai, Wyart, & Tallon-Baudry, 2016).
Importantly, because spontaneous viewing durations
are not correlated across individual participants and are
not correlated with image’s luminance, these effects can-
not be explained by purely bottom–up accounts.
Spontaneous viewing duration also correlated with the

evoked pupil size response, and a partial correlation anal-
ysis revealed that this correlation was independent from
the correlation with ERP amplitude. This suggests that
pupil size changes signify different processes from those
signified by ERP amplitudes in influencing spontaneous
viewing duration. Transient pupil size changes have
recently been implicated in evidence-accumulation pro-
cesses, related to decisional components such as choice
bias (de Gee et al., 2020; Urai, Braun, & Donner, 2017)
or decision confidence (Colizoli, de Gee, Urai, & Donner,
2018). Therefore, these pupil size changes may reflect a
decisional process of when to move onto the next visual
content. It is important to note that for pupil size to corre-
late with behavior, theremust be amediating brain activity
(e.g., subcortical arousal system, whose activity is more
difficult to measure with EEG). It was previously shown
that subcortical locus coeruleus/norepinephrine (LC/NE)
neurons modulate pupil size changes (Joshi, Li, Kalwani,
& Gold, 2016) and their phasic and tonic firing modes
are associated with transient task-specific engagement
and with overall arousal or exploration, respectively (Joshi
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& Gold, 2020; Aston-Jones & Cohen, 2005). An intriguing
possibility that remains to be tested is that serial order is
related to tonic firing of LC/NE neurons, whereas sponta-
neous viewing duration is related to their phasic firing.
Interestingly, we found that spontaneous viewing dura-

tion was predicted by neural stability, indexed by
increased similarity between neural activity patterns at
consecutive timepoints. Neural stability correlated with
spontaneous viewing duration, and this correlation
increased with time, such that higher neural stability was
increasingly more predictive of longer viewing duration at
later time points in the trials. In a similar manner to the
correlation found between ERP amplitude and spontane-
ous viewing duration, neural stability was predictive of
viewing duration after a short delay, here as early as 350
after image onset. Given the latency of this correlation
and the fact that it extends and increases over the time
course of seconds (here measured up to 2.5 sec), the cor-
relation between STPS and spontaneous viewing duration
is likely to rely on SCPs (He & Raichle, 2009; Ergenoglu
et al., 1998). The SCP is the recorded activity at the slow
end of the field potential, mainly below 1Hz, and although
most ERP studies focused on early-latency components
(< 600 msec), the SCP exhibits a later latency, starting
from ∼500 msec, and it lasts several seconds (Khader
et al., 2008; Birbaumer et al., 1990). The SCP has been
linked in the past with information integration across cor-
tical areas, as well as with conscious perception and voli-
tion (He & Raichle, 2009), situating it as an optimal neural
substrate to underlie the spontaneous behavior exam-
ined here, which extends several seconds, requires voli-
tional self-paced behavior, and likely involves long-range
information integration in the absence of a feature-
limiting task.
Taking the ERP and STPS results together, it is sug-

gested that task-free, self-paced perception is a dynamic
process that begins with a brief evoked response that is
agnostic to subsequent viewing duration (possibly related
to initial gist-level processing) and that shortly thereafter,
stronger cortical potentials as well as higher neural stability
predict extended spontaneous viewing duration.
What factors predict the larger ERP amplitudes and

higher neural stability (emerging at 350 msec), both of
which associated with a longer eventual viewing duration
(typically, 2–5 sec; 25th and 75th percentile: 1.8 and
4.8 sec)? Explanations for early-onset neural effects often
resort to bottom–up factors. However, spontaneous
viewing durations were not correlated across individuals
(see behavioral results) and were not correlated with lumi-
nance, suggesting that bottom–up factors have limited
impact on behavior. Rather, spontaneous viewing dura-
tions in response to the same visual content have large
interindividual variability, and this variability likely comes
from top–down factors such as related prior memories or
image-unrelated spontaneous activations. A recent study
showed that prior knowledge shapes the neural represen-
tations of images as early as 300 msec after image onset

(Flounders, González-García, Hardstone, & He, 2019). It
is possible that such latent observer-specific prior mem-
ories also influence spontaneous viewing durations.
Similarly, prestimulus spontaneous neural dynamics
are known to influence image recognition processes
(Podvalny et al., 2019; Sadaghiani et al., 2015) and may
also influence spontaneous viewing duration.

The relation between increased stability and longer view-
ing duration aligns well with previous behavioral evidence
showing that longer viewing durations are associated with a
static rather than a dynamic viewing style, as characterized
by saccadic patterns (Zangrossi et al., 2021). An exciting
possibility is that the association between neural stability
and image viewing duration may generalize to inform other
naturalistic, self-paced behaviors, such as spontaneous
social engagements, in which neural stability at an early
latencymay predict the duration of engagement. More gen-
erally, this finding opens the door to understanding the
transitions betweenmental states through examining spon-
taneous neural dynamics. For example, recent findings
show that spontaneous brain states can be identified by
distinct neural patterns (Kucyi et al., 2021; Yamashita,
Rothlein, Kucyi, Valera, & Esterman, 2021). An intriguing
possibility is that an early stability index is predictive of
the duration the brain “spontaneously” spends in a specific
state and that changes in neural stability are indicative of an
upcoming transition to a different state. If so, this would
illuminate how mental events during spontaneous cogni-
tion (e.g., mind wandering) may be temporally structured
without necessitating explicit retrospective report.

Although the current study makes a methodological
advance in allowing participants to self-pace their viewing
experience, a significant limitation is that it did not allow
for free eye movements. This choice was made to facilitate
neurophysiological and eye-tracking recordings, although
we acknowledge that it interfered with spontaneous eye
movements that would have emerged in fully naturalistic
settings. Future studies that allow spontaneous eye move-
ments during self-paced perception would be important
for testing and extending our findings to fully naturalistic
conditions.

Finally, our null behavioral findings about the impact of
predictive factors on spontaneous viewing duration,
despite positive findings of predictive factors’ influence
on neurophysiological activity at image onset, beg addi-
tional investigation by future studies. One possibility is that
these early neural effects (within 1 sec after image onset)
are counteracted by later or more powerful processes that
reflect an individual’s long-term preferences. Importantly,
the predictive factors were manipulated at the level of
image category, which was repeated or altered (bottom–
up prediction) and expected or not (top–down prediction).
Although image category itself had robust influences on
viewing duration (Figure 1C), predictive factors did not.
This result was contrary to our original hypothesis and high-
lights the importance for future studies to carefully outline
the scope of predictive factors’ behavioral influences. It
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seems plausible that predictive factors are more impactful
on behavior in more difficult, threshold-level conditions
(as often tested in prior studies).

In summary, perceptual experiences that are both task-
free and self-paced are ever more prevalent, with the rise
of social media and increased consumption of accessible
online visual contents. In two independent data sets, we
revealed replicable neurophysiological mechanisms that
are involved in such naturalistic and agentic perception.
Our findings reveal the mechanisms that selectively influ-
ences spontaneous viewing duration, which is highly idio-
syncratic across individuals. These findings shed light on
the complex brain mechanisms of spontaneous percep-
tual behavior and may inform future research that aims
to uncover the neural basis of spontaneous behaviors
andmental states in their naturalistically evolving contexts.

APPENDIX

Memory of Spontaneously Viewed Images Is
Associated with Pupil Size Dynamics
during Perception

At the end of the experiment, we conducted a surprise
memory recognition test using a subset of the images that
were presented during the perception stage. Participants
were asked to decide as fast as possible whether each pre-
sented image appeared during the main perception stage

of the experiment or not. Memory performance was above
chance across participants, with an average of 70% hit rate
(std = 15%) and an average of 84% correct rejection rate
(std = 10%). Mean sensitivity (d0) was 1.65 (std = 0.56),
and the mean measured criterion was 0.24 (std = 0.29).
A paired t test comparing scene images’ hit rate and face
images’ hit rate revealed that scenes were not remem-
bered significantly better than faces (t = 1.82, p > .08),
despite being viewed longer at the perception stage.
Next, amixed-effects logistic regressionmodel was used

to model memory accuracy, measured by hit rate. The
model employed the main behavioral, neural, and pupil-
lary parameters measured at the perception stage as fixed
effects: serial order, spontaneous viewing duration (i.e.,
residuals), alpha power, offset absolute ERP, pupil size at
onset, and pupil size change at offset. Participants were
implemented as a random effect. The model is as follows:

P HITij ¼ 1ð Þ∼
XN

z¼0

βzXzij þ γiþ εij (1)

Here, P denotes memory hit probability. z denotes the
fixed effects parameters. β denotes the parameter’s coef-
ficient, and X denotes each parameter’s measured input. i
denotes individual participants, and j denotes trials. γ is
the random effect parameter.

Table 1. Modeling Memory as a Function of Spontaneous Perception-related Dynamics

Model β SE t p Value CI

Mixed-effects Logistic Regression Modeling of Memory Accuracy (Hit/Miss)

Serial order 0.0014 0.0008 1.6415 .101 [−0.0002, 0.003]

Residuals 1.74E-04 7.52E-05 2.313 .02 [2.63E-05, 0.0003]

Alpha power 7.53E-05 0.0001 0.6481 .517 [−0.0001, 0.0003]

Absolute ERP amplitude −0.02001 0.0594 −0.6703 .5028 [−0.1565, 0.0768]

Onset pupil size −0.0002 0.0002 −1.0737 .2832 [−0.0006, 0.0001]

Offset pupil size change −0.0003 0.0001 −1.7752 .0762 [−0.0007, 3.70E-05]

Mixed-effects Linear Regression Modeling of Memory RT

Serial order −0.1107 0.1326 −0.8346 .4042 [−0.3713, 0.1498]

Residuals −0.0105 1.05E-02 −1.0041 .3157 [−0.0312, 0.01]

Alpha power 2.87E-03 0.0153 0.1866 .852 [−0.0273, 0.033]

Absolute ERP amplitude −3.9668 9.2454 −0.429 .668 [−22.129, 14.196]

Onset pupil size 0.0166 0.0297 0.5607 .5752 [−0.0417, 0.0751]

Offset pupil size change 0.0627 0.0298 2.1004 .0361 [0.004, 0.122]

Top: mixed-effects logistic regression modeling of memory accuracy (hit/miss). Bottom: mixed-effects linear regression modeling of memory RT in
hit trials. Each model incorporated participants as a random factor and the six main parameters measured in the perception stage as the fixed factors.
These factors include serial order, spontaneous viewing duration (i.e., residuals of the regression of viewing duration when controlling from order),
alpha power at image onset, mean absolute ERP amplitude measured at offset, pupil size at image onset, and pupil size change at image offset.
Significant predictors are shown in bold.
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This analysis revealed that only spontaneous viewing
duration significantly predictedmemory accuracy (Table 1,
top, shown in bold).
In addition, a mixed-effects linear regression model of

memory RT in hit trials was conducted, using the same
fixed-effect factors as above, and including participants
as a random effect, as follows:

memory RTij ∼
XN

z¼0

βzXzij þ γiþ εij (2)

Here again, z are fixed-effects parameters,β denotes the
parameter’s coefficient, and X denotes each parameter’s
measured input. i denotes individual participant, and j
denotes trials. γ is the random effect parameter.
This model revealed that pupil size change measured at

image offset during the perception stage predicted the RT
in the later memory task when the image is correctly iden-
tified as having been viewed before (Table 1, bottom).
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