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Review
Glossary

Arrhythmic: without a predominant temporal frequency, often used inter-

changeably with ‘aperiodic’ and ‘irregular’.

Brain oscillations: brain activity patterns that recur with a particular temporal

frequency.

Exponentially decaying function: dX
dt
¼ �lX , where X is a time-varying function

and l is the decay rate. It is called ‘exponentially decaying’ because the

solution to this function is: X(t) = X0e�lt. Convolution of two exponential

functions can be written as: dV
dt
¼ �l1V þ I and dI

dt
¼ �l2I þ e. In the context of

the present discussion, V could approximate neuronal membrane potential,

and I the postsynaptic current.

Preferred phase in nested frequencies: the phase of the lower-frequency

fluctuation at which the amplitude of the higher frequency is the largest.

Scale invariance: a property referring to the lack of a characteristic scale. Its

adjective ‘scale-invariant’ is used interchangeably with ‘scale-free’. Scale

invariance can manifest in either temporal (as in ‘scale-free dynamics’) or

spatial (as in ‘fractal geometry’) domain. Mathematically, scale invariance is

characterized by a power-law distribution of the temporal or spatial power

spectrum.

Time constant: the time constant of an exponentially decaying function is
Brain activity observed at many spatiotemporal scales
exhibits a 1/f-like power spectrum, including neuronal
membrane potentials, neural field potentials, noninvasive
electroencephalography (EEG), magnetoencephalogra-
phy (MEG), and functional magnetic resonance imaging
(fMRI) signals. A 1/f-like power spectrum is indicative of
arrhythmic brain activity that does not contain a predom-
inant temporal scale (hence, ‘scale-free’). This character-
istic of scale-free brain activity distinguishes it from brain
oscillations. Although scale-free brain activity and brain
oscillations coexist, our understanding of the former
remains limited. Recent research has shed light on the
spatiotemporal organization, functional significance, and
potential generative mechanisms of scale-free brain ac-
tivity, as well as its developmental and clinical relevance.
A deeper understanding of this prevalent brain signal
should provide new insights into, and analytical tools
for, cognitive neuroscience.

Introduction
A student entering neuroscience today might learn about the
irregular, Poisson-like firing in cortical pyramidal neurons on
the one hand, and the plethora of brain oscillations on the
other hand. Both are well-established neuroscience phenom-
ena: the former from single- or multiunit recordings of neu-
ronal spiking, the latter from recordings of brain electrical
field potentials, such as local field potentials (LFP), EEG, and
MEG. Why is it that one modality has emphasized irregular
patterns of neural activity, whereas the other has empha-
sized oscillatory patterns? In fact, regular, rhythmic neuronal
firing patterns do exist in cortical excitatory neurons; they are
just less common [1–3] (Figure 1A). Irregular, arrhythmic
(see Glossary) field potential activity patterns also exist
(Figure 1B) and account for the majority of the signal power
recorded in LFP, EEG, and/or MEG experiments (Figure 1C),
but are less studied than brain oscillations. In this review, I
focus on what we currently know about this prevalent, ar-
rhythmic component of brain field potentials, and identify
several urgent questions in this research field.

Brain oscillations versus scale-free brain activity
Brain oscillations are recurring patterns of brain activity
that follow a particular temporal beat. For example, the
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first discovered EEG rhythm, the occipital alpha wave,
proceeds at approximately 10 cycles per second [4]. Thus,
brain oscillations are most easily identified in the frequen-
cy domain, because their power spectra contain peaks at
the corresponding frequency ranges (arrows in Figure 1C).
There are several brain oscillations at different frequency
ranges, each with their own underlying mechanisms and
functional roles [5–8].

At the same time, it is well known that the power
spectrum of brain electrical field potentials contains a
predominant ‘1/f ’ component; that is, power tends to fall
off with increasing frequency following a power-law func-
tion: P / 1/fb, where P is power, f is frequency, and b is a
parameter (typically in the range of 0�3) named the
‘power-law exponent’. A power-law function is indicative
of scale invariance, which suggests that no particular
timescale or frequency dominates the dynamics. Hence,
the brain activity contributing to this 1/f slope in the power
spectrum is devoid of periodicity (i.e., is arrhythmic; Box 1).
Accordingly, it has recently been named ‘scale-free brain
activity’ in reference to its scale-invariant nature [9]. (Note
that white noise, including Poisson firing patterns, is a
special case of arrhythmic activity, in which case b equals 0
and power is constant across different frequencies.) A
power-law distribution of the power spectrum is charac-
teristic of the temporal dynamics of brain activity at many
defined as the reciprocal of the decay rate: t = 1/l. It is also directly related to

the knee frequency in the power spectrum: f 0 ¼ 1
2pt. Importantly, time constant

is an entirely different concept from the ‘timescale’ of an oscillation. The

timescale of an oscillation is characterized by the reciprocal of its characteristic

frequency. By contrast, the time constant of an exponentially decaying function

describes how fast the system returns to baseline, and does not imply the

existence of periodicity at all.

http://crossmark.crossref.org/dialog/?doi=10.1016/j.tics.2014.04.003&domain=pdf
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Motor-related

Figure 1. Example rhythmic and arrhythmic activity in neuronal firing and field potentials. (A) Activity of two neurons in macaque Area 5 around motor responses. (i) Trial-

averaged spike rate histogram; the two neurons exhibit similar firing rates. (ii) Each tick mark in the raster corresponds to a single spike. 1-s-long data from 20 trials are

shown for each neuron. (iii) Interspike interval (ISI) histograms for these two neurons within the time window indicated by the horizontal line. Neuron #1 exhibits an ISI

histogram approximating an exponential distribution: a signature of an arrhythmic, Poisson process. Neuron #2 displays a peaked ISI distribution: an indication of rhythmic,

regular firing. (B) Raw activity traces from three electrocorticography (ECoG) electrodes in a neurosurgical patient. Electrodes #1 and #2 were over the left frontal cortex,

electrode #3 over left temporal cortex. Data were recorded using a DC-coupled amplifier with a 500-Hz sampling rate. Two 10-s-long segments are shown. Arrows point to

examples of oscillations. (C) Power spectra for the three electrodes shown in (B), averaged over 83-min recording during the waking state. The spectra are presented in a

log-log scale, under which a power-law distribution P / 1= f b
� �

manifests as an approximately straight line log P / � blog fð Þ. Scale-free brain activity refers to the irregular,

arrhythmic brain activity contributing to this ‘1/f slope’ of the power spectrum. Arrows point to peaks in the power spectra corresponding to brain oscillations. Adapted from

[3] (A) and [9] (B,C).
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different observational levels: it has been described in the
fluctuations of neuronal membrane potentials [10,11], LFP
[12], and invasive EEG [i.e., electrocorticography (ECoG)
signals [9,13–15]], scalp-EEG and MEG recordings [16], and
fMRI signals [17–19] (Box 2). In addition, the amplitude
fluctuations of narrow-band brain oscillations in EEG or
MEG recordings exhibit prevalent scale-free dynamics [20].
A power-law distribution has also been reported in the
statistics of neurotransmitter release [21] and neuronal
firing [22], where it has been more controversial (e.g.,
[11,13,23]). Lastly, fluctuations of human behavioral output
such as reaction time, hit rate, and force, have often been
found to exhibit a 1/f-like power spectrum as well [24–28].

In a power spectrum, brain oscillations appear as bumps
on top of this 1/f slope (Figure 1C) (the bumps may be
difficult to detect in a log-log plot if the amplitude of brain
oscillations is much smaller than that of the 1/f slope at
the corresponding frequency range). For decades, brain
activity contained in the ‘1/f ’ slope has been deemed
Box 1. Could scale-free brain activity be produced by the

sum of many oscillations?

Could a 1/f-type power spectrum be the result of a summation over

many narrow-band oscillations, where the amplitude of an oscilla-

tion is inversely proportional to its frequency? Although mathema-

tically possible (indeed, it is the basis of Fourier transform), in the

context of the brain, such a perfect line-up of many generators at

each frequency with a perfectly scaled amplitude would seem to be

magic instead of biological reality. In particular, we know that, when

oscillations do exist, they often manifest as ‘bumps’ on top of the 1/f

slope in the power spectrum (Figure 1B,C, main text). In addition,

because oscillations come and go, such a ‘summation’ account

would require averaging over long periods of time to produce a 1/f-

type power spectrum. In a previous paper [9], my colleagues and I

showed that, even with data records as short as 20 s, reproducible 1/

f-type power spectrum, as well as the oscillatory bumps on top of it,

can be discerned. Overwhelming results now suggest that the more

parsimonious and biologically realistic framework is that there are

two types of brain activity that coexist: the broadband, arrhythmic

activity and the narrow-band, rhythmic oscillations.
unimportant and was often removed from analyses to
emphasize brain oscillations. However, in recent years,
increasing evidence suggests that scale-free brain activity
contributes actively to brain functioning. Computational
modeling work has further shed light on how the irregular,
Poisson firing of cortical pyramidal neurons might combine
in a recurrent network to contribute to the distinctive ‘1/f ’
shape of the brain field potential power spectrum. Initial
evidence has also emerged suggesting changes in scale-free
brain activity during development [29,30], sleep [31], and
under various neurological and psychiatric disorders [32–
35]. These recent advances argue that, contrary to being a
form of noise, scale-free brain activity in noninvasive
recordings, such as EEG and MEG, provides a window
onto the population activity of the cortical pyramidal
neurons.

Scale-free brain activity is not unstructured noise
1/f-type temporal dynamics are prevalent not only in the
nervous system, but also in nature at large [36,37]. The
ubiquity of scale-free dynamics in a variety of systems was
often taken as evidence that these dynamics lack function-
al specificity, as exemplified by the colloquial name ‘1/f
noise.’ To a large extent, the historical neglect of scale-free
brain activity is due to this deflationary interpretation of
scale-free dynamics. However, it is important to keep in
mind that the power spectrum is only a second-order
statistic; similarity of the power spectrum does not indicate
similarity in higher-order statistics beyond the power
spectrum. In other words, diverse generative mechanisms
in a variety of systems can give rise to scale-free dynamics
with similar power spectral shape, but the fine structures
within these dynamics may differ across systems, provid-
ing clues about the underlying generative mechanisms [9].

To illustrate this point, in a previous study [9], He et al.
examined higher-order statistics of human ECoG signals
during the awake, resting state (continuous recordings for
19�83 min), as well as continuous earth seismic waves
(University of Nevada, Reno seismic network, for
481



Box 2. Power laws: how good is good enough?

The power-law distribution is undoubtedly one of the most con-

troversial topics in the recent history of modern science [36,37,82].

This is partly because it has been claimed to exist in a wide array of

systems, such as earthquakes, finance, and solar flares, to name but a

few, sometimes without critical examination [83]. The power-law

distribution has been used to describe three different types of

function. Unfortunately, the discussions of power laws have often

lumped them together indiscriminately. These functions include:

(i) Probability function (i.e., normalized histogram), which describes

the frequency or occurrence of a variable x as a function of its size

or rank k: Px(k) / 1/kb. Examples of this category include the

famous Zipf’s law and neuronal avalanches [79].

(ii) The relation between two variables: y / xb. A well-known

example of this class of power laws is the allometric scaling

law in biology, where a biological variable (Y) scales as a function

of body mass (M): Y / Mb [84].

(iii) The temporal or spatial power spectrum: P( f) / 1/fb. In the case of

the temporal power spectrum, a power-law distribution is

indicative of scale-free dynamics [37], the subject of this review.

In the case of the spatial power spectrum, a power-law

distribution is indicative of fractal geometry [85], such as the

shape of coastlines and mountain ranges, and the famous

Mandelbrot set.

There have been two extremes of attitude toward power laws. On

the one hand, a school of physicists was eager to seek a universal law

of nature and saw the power-law distribution as a signature that

unites everything and provides an opportunity for deriving a law that

explains ‘how nature works’ [36]. Under this mind set, a simple model

that produced a power-law distribution was sometimes implicated as

explaining all power-law distributions across widely different sys-

tems. However, as has been stressed here and elsewhere, diverse

generative mechanisms can give rise to an identical power-law

distribution [9,82,86]. Moreover, in the case of scale-free dynamics, an

identical power spectrum between two signals does not imply that they

share other, higher-order statistical structures [9]. On the other hand,

perhaps due to the ‘universal’ quality that was erroneously attached to

the power-law distribution, many biologists including neuroscientists

have reacted negatively toward it. Thus, it is often considered that the

‘1/f noise’ is unspecific and could arise from instrument noise.

However, several studies carefully controlling for instrument noise

found that it is orders of magnitude smaller in power than the recorded

brain activity, and more resembles white noise [9,59]. Although

rigorous statistical assessment of the power-law distribution was not

carried out in all reports of such a phenomenon, a previous study

applying goodness-of-fit test and model comparisons [83] to the fMRI

signal power spectrum found that the power-law model was viable and

provided better fit to the empirical data than alternative models such as

exponential and log-normal functions [17]. Lastly, given the diverse

mechanisms that can give rise to a power-law distribution, attaching a

‘power-law’ label may not be that important after all: biological data are

messy and may never exhibit a curve as precise as the blackbody

radiation. However, correctly characterizing the distribution of the data

is important if it may shed light on the properties and mechanisms of

the signal under study. For example, the tripartite shape of the human

ECoG power spectrum suggests that different network and cellular

mechanisms may contribute to different frequency ranges (see

Modeling the power spectrum of ECoG and LFP activity in the main

text). In this sense, ‘scale-free’ is a phenomenological, instead of

mechanistic, definition. In conclusion, overwhelming data now suggest

that both brain oscillations and arrhythmic brain activity do exist, and a

theoretical framework that accommodates their coexistence is sorely

needed.
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approximately 4 months) and stock market fluctuations
(daily price of Dow-Jones index for approximately 80
years). All three signals exhibited a power spectrum close
to the form of P / 1/f2. For lack of an established mean-
ingful index of higher-order statistics in the context of
scale-free dynamics, they borrowed an approach from the
field of brain oscillations, nested frequencies [38], which
characterize the dependence between the phase of a low-
frequency component and the amplitude of a high-fre-
quency component. This approach revealed prominent
nested-frequency patterns within all three types of signal
that were absent in a simulated random walk that shared
an identical power spectrum. Interestingly, nested-fre-
quency patterns were systematically different between
brain activity, earth waves, and stock market: whereas
the preferred phase of nested-frequency patterns within
brain ECoG signals concentrated around 0 and �p (cor-
responding to the peak and trough of the low-frequency
fluctuation, respectively), those in earth seismic waves
concentrated around �p/2 (corresponding to upward and
downward shifts in seismic activity, respectively). By
contrast, there was no dominant preferred phase in stock
market fluctuations. These results suggest that, despite
similar power spectral shape (power-law scaling with an
exponent b � 2), the arrhythmic ECoG signal, the earth
seismic waves, and the stock market fluctuations each
contain specific higher-order statistical structures that
differ from each other. These analyses provided the first
clues that, contrary to the negative connotations of the
term ‘1/f noise,’ scale-free brain activity contains rich,
specific temporal structures.
482
Beyond nested frequencies
Nonetheless, what do these nested-frequency patterns in
scale-free dynamics mean? Nested-frequency analysis
necessitates filtering the broadband signal in different
frequency ranges and extracting the phase and power of
a lower- and a higher- frequency band, respectively.
Whereas it is straightforward to characterize the phase
and power corresponding to rhythmic brain oscillations,
the interpretation of phase and power extracted from
filtered arrhythmic signals requires more caution. Al-
though the above study avoided narrow-band filters with
steep roll-off, which are prone to ringing artifacts in the
time domain (see Supplementary Note in [9]), an intuitive
interpretation of this finding remained elusive.

Indications of the potential mechanisms of these results
emerged when the surface Laplacian transform was ap-
plied to ECoG data before nested-frequency analysis was
carried out. Under Laplacian transform, the signal from
each electrode is subtracted by the mean of its four nearest
neighbors, such that the transformed signal represents
local vertical current flux and approximates transcortical
recording (i.e., cortical–surface recording referenced to the
underlying white matter) [39]. By contrast, in the afore-
mentioned study and other studies on nested frequencies
in ECoG signals [9,38,40,41], an average-reference or bi-
polar montage was used, whereby the polarity of the
transformed signal depended heavily on the activity of
the reference. Interestingly, after Laplacian transform,
the preferred phase in most nested-frequency pairs clus-
tered only around �p (as opposed to the original finding of
preferred phases around 0 and �p), corresponding to the
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Figure 2. Nested frequencies (i.e., cross-frequency phase-amplitude coupling) in human waking electrocorticography (ECoG) data under Laplacian transform. The Laplacian

transform subtracts the signal from an electrode by the average of its nearest neighbors and, thus, represents local vertical current flux. (A) Nested-frequency patterns

across 116 electrodes in five patients. Phase was extracted from the 0.003�0.5-Hz band (leftmost column), and four frequency bands centered at 1, 6, 11, and 16 Hz.

Amplitude was extracted from five frequency bands centered at 25, 50, 100, 150, and 200 Hz. Filters with a smooth roll-off were used (for filter characteristics, see

Supplementary Note in [9]). For each frequency pair, the subplot shows a scatter-plot of all electrodes, each represented by one dot. The ordinate value plots the cross-

frequency coupling strength as assessed by the modulation index [9,38]. The red horizontal line (close to the x-axis) indicates the significance level (P <0.05 after Bonferroni

correction). The abscissa value plots the preferred phase of the lower frequency (i.e., the phase of the lower-frequency fluctuation at which the amplitude of the higher

frequency is largest). Data are the same as published in [9], except that the Laplacian transform, instead of an average reference, is used. For frequency pairs indicated by

the magenta rectangle, preferred phases clustered around �p, indicating that negative sharp transients in the time domain (B) may contribute to the nested frequencies. (B)

An example of raw ECoG activity trace containing the appearance of negative field potential transients (nFPs) (arrow), which may underlie the nested-frequency patterns for

phases >1 Hz [magenta rectangle in (A)].
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trough of the low-frequency fluctuation (Figure 2A). The
exceptions are 1 Hz and <0.5 Hz bands (Figure 2A, two
leftmost columns), where the preferred phase was between
0 and p (i.e., on the negative shift), consistent with known
physiology of the slow cortical potentials (SCPs) repre-
sented in this frequency range [39,42–44]. This pattern
was similar during slow-wave sleep (not shown), except
that the preferred phase in the SCP range moved close to 0
(corresponding to the peak of the low-frequency fluctua-
tion), which was likely due to the contamination by up-and-
down states (UDS) during deep sleep (for the difference
between UDS and SCP, see Supplementary Note 3 in [39]).
The concentration of preferred phase around �p after
Laplacian transform can be explained by negative field
potential transients (nFPs) observed in the raw ECoG
signals (Figure 2B). In the frequency domain, these sharp
nFPs produce realignment of phase at �p across many
frequencies and, simultaneously, increase of power across
many frequencies (as demonstrated in [45,46]), thereby
producing nested-frequency patterns with preferred phase
around �p. Strikingly, a similar time domain-based ac-
count can be provided for the nested-frequency patterns in
earth seismic waves. Seismic waves are dominated by step
functions due to the collision of tectonic plates [47] that, in
the frequency domain, would realign the phase of many
different frequencies at �p/2.

In summary, the above considerations illustrate an
account of the nested frequencies based on time-domain
waveforms that have more straightforward mechanistic
explanations. Broadly speaking, with the exception of
event-related potential (ERP) analyses, the standard in-
terpretation of continuous neuroelectrical data has been
dominated by frequency-domain methods that decompose
a broadband signal into many different frequency bands. In
the case of a genuine brain oscillation (e.g., [48]), such an
approach is straightforward, effective and intuitive. How-
ever, this approach is often applied to broadband brain
activity without first assessing the occurrence of brain
oscillations, in which case any extracted narrow-band
signals may have no real biological underpinning whatso-
ever (e.g., see Supplementary Note in [9]). In this context, it
is especially enlightening to ponder that the artificiality of
using a series of sinusoids to reconstruct any time series
may have had a large role in Lagrange’s rejection of Four-
ier’s paper in 1807. It took Fourier some 15 years to
eventually publish his work [49], a fact that should bring
some measure of perspective and consolation to present-
day scientists. Given that classic signal-processing meth-
ods were developed in engineering fields with the goal of
analyzing narrow-band oscillations [49], going forward,
development of time- and/or frequency-domain-based
methods to capture the fine structures within arrhythmic,
broadband signals will likely prove fruitful in the investi-
gation of scale-free brain activity (for an example, see [46]).

Functional significance of scale-free brain activity
Research on the functional roles of scale-free brain activity
is just beginning. Nonetheless, there are several tantaliz-
ing lines of evidence suggesting that it is intimately related
to brain functioning.
483
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First, the broadband (approximately 5�200 Hz) power
of LFPs has been shown to correlate tightly with popula-
tion neuronal firing rates in both human and macaque
[14,46]. Ray and Maunsell [46] presented an impressive
dissociation between scale-free brain activity and brain
oscillation in the same frequency range, using LFPs
recorded from the primary visual cortex (V1) of awake
macaques. As they increased the size of the visual stimu-
lus, both population firing rate and broadband power in the
gamma frequency range decreased, whereas the power of
narrow-band gamma oscillation increased. Hence, in this
context, the broadband, arrhythmic activity, but not gam-
ma oscillation, correlated with neuronal firing rate. Given
the tight relation between broadband power and popula-
tion firing rate, it might not come as a surprise that
broadband power, especially in the gamma frequency
range (30�200 Hz), where it is less obscured by prominent
oscillations in the theta, alpha and beta ranges, demon-
strates remarkable task specificity across a diverse range
of tasks, including visual stimulation [50], finger move-
ment [51], speech production [52], movie viewing [53], and
default-mode functions, such as autobiographical judg-
ment [54,55].

Second, multiple studies have demonstrated that the
steepness of the 1/f-like power spectrum, quantified by the
power-law exponent b, can be modulated by sensory sti-
muli or task performance. A study using intracellularly
recorded membrane potentials in cat V1 found that the
power-law exponent in the high-frequency range
(75�200 Hz) could be modulated by the spatial and tem-
poral correlation statistics of the visual input [11]. Using
ECoG recordings in humans, it was observed that the
power-law exponent b in the low-frequency SCP range
(<4 Hz) decreased during a visual detection task of unpre-
dictable stimuli [9]. Given that the power spectrum is
equivalent to the Fourier transform of the autocovariance
function (‘Wiener-Khinchin theorem’), a reduced power-
law exponent indicates shorter and weaker autocorrelation
in the time domain. Speculatively, this reduction of tem-
poral autocorrelation (i.e., redundancy) in the ECoG sig-
nals during task may be consistent with the need for more
efficient online information processing.

Third, given the correlation between SCP and fMRI
signals [39,42,56,57], it is reassuring that a similar phe-
nomenon was observed in the fMRI signal, namely that the
power-law exponent b decreased during performance of a
visual detection task compared with rest [17]. Interesting-
ly, this change was found in both activated and deactivated
brain regions, suggesting reduction of temporal autocorre-
lation in both. This finding has recently been extended to a
working memory task: as cognitive load was enhanced, the
power-law exponent was further reduced (Chang C., He
B.J., and Duyn J., HBM meeting, 2012), paralleling a
similar observation in the fluctuations of human behavior-
al performance [58]. The whole-brain coverage of fMRI
further allowed elucidation of the variation of b across
brain networks, which was found to be largest in the
default network, saliency network, and visual cortices,
and smallest in subcortical and motor regions [17,30].
Interestingly, the brain regions with a larger b were also
more expensive in their glucose metabolism [17]. These
484
results suggest that the degree of autocorrelation within
fMRI signals varies across resting-state networks and
seems to increase with higher resting metabolism.

Lastly, as mentioned above, the amplitude fluctuations
of brain oscillations also exhibit scale-free temporal dy-
namics [20,59]. Recently, intriguing evidence has emerged
showing that, across subjects, the scaling exponent of EEG
and MEG signal amplitude fluctuations correlated with
the scaling exponent of behavioral output [26,27]. These
observations extended the behavioral correlations of scale-
free brain activity from the within-individual to the across-
individual domain.

Generative mechanisms of scale-free brain activity
What are the generative mechanisms of scale-free brain
activity? In this section, I first focus on existing computa-
tional modeling studies on the power spectral shape of
invasively recorded LFP and ECoG signals, and then
describe the discrepancy of the power-law exponent ob-
served across modalities and the intriguing questions
posed by these findings.

Modeling the power spectrum of ECoG and LFP activity

Studies investigating the power spectrum of ECoG and
LFP signals have reported similar values for the power-law
exponent, which is typically in the range of 2�3
[9,12,13,15]. Similar power-law exponents were also found
in the power spectrum of neuronal membrane potential
fluctuations [10,11]. In particular, two studies using hu-
man ECoG, focusing on the relatively low (from <0.01 to
100 Hz) [9] and relatively high (10�500 Hz) [13] frequency
ranges, respectively, reported strikingly similar exponents
in the middle-frequency range: b = 2.44 in the range of
1�100 Hz in the first study, and b = 2.46 in the range of
15�80 Hz in the second study. The close alignment of these
numbers exemplifies the robustness of the power-law dis-
tribution.

In addition to this middle-frequency range, Miller et al.
[13] found a transition to b � 4 in the high-frequency range
above 75 Hz, suggesting that power declines faster with
increasing frequency in this range. These authors proposed
a simple model that can explain the power spectral shape,
which utilizes the convolution of two exponentially decay-
ing functions representing the post-synaptic current and
the membrane leak, respectively. An exponentially decay-
ing function in the time domain is characterized by a
‘Lorentzian’ function in the frequency domain of the form:
P � constant for f << f0; and P / 1/f2 for f >> f0, where f0
is the ‘knee’ frequency. The ‘knee’ frequency is directly
related to the time constant (t) of the exponential decay,
such that f0 = 1/(2pt). Recalling that convolution in the
time domain is equivalent to multiplication in the frequen-
cy domain, the resulted power spectrum from this model is
thus the multiplication of two Lorentzians, following the
form: P � constant for f << f1; P / 1/f2 for f1 << f << f2;
and P / 1/f4 for f >> f2, where f1 and f2 are two ‘knee’
frequencies determined by the time constants.

Determining the locations of f1 and f2 may shed light on
the underlying generative mechanisms of arrhythmic
brain activity. Whereas Miller et al. found f2 to be around
75 Hz, their data do not reveal the location of f1 in the lower
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frequency range. This information is provided in the study
by He et al. [9], which found f1 to be around 1�2 Hz.
Together, these results suggest the existence of two time
constants: one around 2�3 ms, another around 100 ms. At
present, the origins of these time constants remain a
speculation. One possibility is that the 2�3-ms time con-
stant originates from synaptic current, and the �100-ms
time constant from membrane leak [13]. An alternative
possibility is that the �100-ms time constant comes from
the slow NMDA synaptic current [60,61], and the mem-
brane leak time constant can be as short as 2�3 ms during
active synaptic activity [62]. Adjudication between these
two scenarios will require future experiments, such as
blocking NMDA signaling and examining the resulting
change in the power spectrum of field potentials.

Interestingly, He et al. found that, at the very low
frequency range, below a ‘shoulder’ of 0.1�1 Hz where
power is relatively flat, the power spectrum again fol-
lowed a form close to P / 1/f2 (see Figure 1 in [9]). Poten-
tial generative mechanisms for this low-frequency
behavior have recently been explored in a recurrent net-
work model (Chaudhuri R., He B.J., and Wang X.-J.,
Cosyne meeting, 2014). It was found that a recurrent
network of rate-based nodes with linear couplings and
random connectivity, when poised near criticality (i.e.,
with balanced excitation and inhibition), could reproduce
the low-frequency behavior of the ECoG power spectrum.
In such a network, the network recurrent activity pro-
duces one or more very slow time constants, whose corre-
sponding ‘knee’ frequencies are below that so far
investigated empirically (0.003 Hz [9]). Moreover, reduc-
ing the spatial correlation of the inputs to different nodes
resulted in a flattening of the power spectrum, similar to
that observed in human ECoG and fMRI data during task
performance [9,17]. Thus, this network naturally con-
verts spatial correlation into temporal correlation, pro-
viding support for a previous proposal that decoupling
among neuronal groups might underlie the reduction of
power-law exponent during task [17].

This low-frequency range of the ECoG activity (i.e., the
SCP) bears significant resemblance to persistent neural
activity [63,64]. As with persistent neural activity, both
network and cellular mechanisms may be at play in gen-
erating the SCP. In particular, future studies should in-
vestigate potential contributions by slow cellular and
neuromodulatory mechanisms, such as metabotropic glu-
tamate receptors [65], endocannabinoid signaling [66], and
the cholinergic pathway [67]. Under anesthesia or deep
sleep, the presence of UDS may also contribute to the
power spectral shape of LFP and ECoG signals [68]. In
addition, the effect of different network topology on the
power spectrum should be further explored. Of note, two
recent computational modeling studies found that network
multistability caused by clustered connections or inhibito-
ry neurons is conducive to producing slow fluctuations in
population activity [69,70].

Lastly, a separate class of models has attributed the 1/f-
type power spectrum of neuronal membrane potentials and
EEG signals to the low-pass filtering effect of the cable
properties of neuronal dendrites [71,72]. However, in-
depth treatment of this literature is beyond the scope of
this review. Interestingly, this class of models predicts
higher power-law exponents for neuronal membrane
potentials than for the EEG signals (Pettersen et al.,
http://arxiv.org/abs/1305.2332). With the assumption that
the noise-generating membrane currents themselves obey
a power law with an exponent of 1, this theory predicts a 1/
f-type power spectrum for the membrane potentials with
an exponent of 2.6, approximately in accordance with
empirical literature [10,11]. For the EEG, the power-law
exponents are predicted to be in the range of 1�2.5 depend-
ing on the considered frequency region and dendritic
lengths; this is in qualitative agreement with experimental
observations [16,73].

Differences between power-law exponents of signals

from different recording modalities

Dehghani et al. investigated the power spectrum of simul-
taneously recorded scalp-EEG and MEG signals [16] in
human subjects under quiet wakefulness. They found that
the power-law exponent of scalp-EEG signals varied from 1
to 2 across the scalp in the frequency range of 0.1�10 Hz,
with a mean of 1.33 � 0.2 (� s.d). Interestingly, the power-
law exponent of MEG signals was systematically smaller
in the same frequency range (i.e., the power spectrum was
flatter), with a mean of 1.06 � 0.3 after correcting for noise.
Using data acquired in our laboratory, we have observed a
similar difference between the power-law exponents of
EEG and MEG signals, with EEG signals having system-
atically steeper power spectra than MEG signals (Hill Z., Li
Q., and He B.J., unpublished). Lastly, several studies have
found the power-law exponent of fMRI signals in the gray
matter to be mostly in the range of 0.5�1 (assessed for
<0.1 Hz frequency region), with a mean across brain
regions being close to 0.8 [17,19].

The differences between the power-law exponents of
these different signals should be an important topic for
future research. In particular, they may hold clues to the
underlying generative mechanisms of arrhythmic brain
activity recorded in these different modalities. A direct
comparison between the fMRI signal and the other imag-
ing modalities is difficult because the fMRI signal is subject
to neurovascular coupling, a process that we still do not
fully understand. However, the difference between EEG
and MEG signal exponents is intriguing, and might con-
stitute evidence for frequency-dependent filtering in the
extracellular medium [16], although this remains a subject
of intense debate [72,74]. Lastly, because EEG and ECoG
record similar signals, the relatively large difference be-
tween their power-law exponents (1.5 versus 2�3) may be
due to signal summation and filtering by the dura, skull,
and scalp in scalp-EEG.

Relation between broadband activity, amplitude
fluctuations of brain oscillations, and neuronal
avalanches
In this review, I focused on scale-free dynamics in the raw
fluctuations of broadband (from <0.01 Hz to �500 Hz)
electrical and magnetic signals from the brain, as well
as the low-frequency (<0.5 Hz) activity recorded in fMRI.
As mentioned above, the amplitude fluctuations of narrow-
band brain oscillations also exhibit scale-free dynamics
485
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[20]; moreover, a recent burgeoning literature has demon-
strated the functional [26,27,59], developmental [29], and
clinical [34] relevance of this phenomenon. Future studies
should investigate the relation between broadband scale-
free brain activity and scale-free dynamics in narrow-band
amplitude fluctuations. Such a potential link is especially
tantalizing given the prevalent phase-amplitude coupling
in brain electrical signals [9,75,76].

Recent empirical [27,87] and theoretical [77] work has
also linked scale-free dynamics in narrow-band amplitude
fluctuations with neuronal avalanches. Neuronal ava-
lanches refer to the phenomenon that the propagation of
negative sharp transients in LFPs follows a power law in
its spatial and temporal distributions [78,79]. Recalling the
discussion above that these nFPs are likely a major con-
tributor to nested frequencies in broadband scale-free
activity, it is tempting to speculate a potential connection
between scale-free brain activity and neuronal avalanches.

A comprehensive theoretical framework that incorpo-
rates broadband scale-free activity, scale-free dynamics in
narrow-band amplitude fluctuations, and neuronal ava-
lanches will surely be rewarding and may not be far in
sight. Encouragingly, recent empirical and modeling stud-
ies have pointed to the ‘critical’ role of balanced excitation
and inhibition in the genesis of all three phenomena
(Chaudhuri R., He B.J., and Wang X.-J., Cosyne 2014)
[77,80,81].
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