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Scale-Free Properties of the Functional Magnetic Resonance
Imaging Signal during Rest and Task
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It has been shown recently that a significant portion of brain electrical field potentials consists of scale-free dynamics. These scale-free
brain dynamics contain complex spatiotemporal structures and are modulated by task performance. Here we show that the fMRI signal
recorded from the human brain is also scale free; its power-law exponent differentiates between brain networks and correlates with fMRI
signal variance and brain glucose metabolism. Importantly, in parallel to brain electrical field potentials, the variance and power-law
exponent of the fMRI signal decrease during task activation, suggesting that the signal contains more long-range memory during rest and
conversely is more efficient at online information processing during task. Remarkably, similar changes also occurred in task-deactivated
brain regions, revealing the presence of an optimal dynamic range in the fMRI signal. The scale-free properties of the fMRI signal and
brain electrical field potentials bespeak their respective stationarity and nonstationarity. This suggests that neurovascular coupling
mechanism is likely to contain a transformation from nonstationarity to stationarity. In summary, our results demonstrate the functional
relevance of scale-free properties of the fMRI signal and impose constraints on future models of neurovascular coupling.

Introduction
Research using fMRI has tremendously deepened our under-
standing of functional localizations in the brain and interactions
between brain regions and networks. The overwhelming majority
of fMRI studies use approaches that fall into two categories: (1)
comparing the fMRI signal amplitude between behavioral condi-
tions and deducing the functional properties of a brain region
using either univariate (Posner and Raichle, 1997; Rosen et al.,
1998) or multivariate (Haxby et al., 2001; Haynes and Rees, 2006;
Pereira et al., 2009) statistical methods, and (2) studying the in-
teractions between spontaneous or task-evoked fMRI signal am-
plitude fluctuations from different brain regions using a variety
of methods, including linear correlation, Granger causality, and
statistical modeling (Fox and Raichle, 2007; Friston, 2009).

Several recent studies suggested that the variance of the fMRI
signal provides additional, primarily orthogonal information to
the above mean-based measurements. The fMRI signal variance
not only decreases in the visual cortex during task-induced acti-
vation (Bianciardi et al., 2009) but also decreases in the default-
mode network during task-induced deactivation (Fransson,
2006). Furthermore, it was shown recently that aging correlates
with decreased fMRI signal variance (Garrett et al., 2010, 2011).

Along a separate line of research, it has been known for more
than a decade that the fMRI signal demonstrates temporal depen-
dence and a power spectrum that is 1/f like: P � 1/f �, where P is
power, f is frequency, and � is called the “power-law exponent”
(Bullmore et al., 2001). However, there has been much reserva-
tion about the relevance of this phenomenon to brain function,
primarily for two reasons. First, it is feared that instrument noise
may produce artifactual 1/f-like signals (Zarahn et al., 1997). Sec-
ond, it is sometimes argued that, because a P � 1/f � power spec-
trum is exhibited by many natural, physical, and biological
processes (Schroeder, 1991; Bak, 1996; Mandelbrot, 1999; Gold-
berger et al., 2002), it is unsurprising and unlikely to be important
for brain function.

There is by now overwhelming evidence against the above two
sentiments. First, when instrumental noise is carefully controlled
for, it was found using both fMRI and electrophysiology that the
brain does indeed produce 1/f � power spectra on its own (He et
al., 2010). These signals have been termed scale-free brain activity
because a P � 1/f � power spectrum is indicative of scale invari-
ance (He et al., 2010). Second, scale-free properties of the fMRI
signal vary among gray matter, white matter, and CSF (Bullmore
et al., 2004; Ciuciu et al., 2011) and between brain networks (He
et al., 2010), arguing strongly against an instrumental-noise ori-
gin. Most importantly, recent evidence showing that the power-
law exponent of brain field potentials decreases during task
activation (He et al., 2010) suggests that scale-free brain activity is
functionally significant.

In this study, we rigorously tested the hypothesis that the
fMRI signal is scale free and investigated its scaling properties
in relation to fMRI signal variance, brain networks, metabo-
lism, and task performance. Our results confirm the above
hypothesis, demonstrate that both the dynamic range and the
temporal memory of the fMRI signal decrease during task

Received April 27, 2011; revised July 12, 2011; accepted Aug. 3, 2011.
Author contributions: B.J.H. designed research; B.J.H. performed research; B.J.H. contributed unpublished re-

agents/analytic tools; B.J.H. analyzed data; B.J.H. wrote the paper.
This research was supported by the Intramural Research Program of the NIH/NINDS. I am grateful to Marc Raichle

for sharing the data used in this study, past teachings of brain metabolism, and comments on a previous draft of this
manuscript and to Patrice Abry and Philippe Ciuciu for sharing methods used in synthesizing fractional Gaussian
noise.

The author declares no competing financial interests.
Correspondence should be addressed to Biyu J. He, National Institute of Neurological Disorders and Stroke,

National Institutes of Health, Bethesda, MD 20892. E-mail: biyu.jade.he@gmail.com.
DOI:10.1523/JNEUROSCI.2111-11.2011

Copyright © 2011 the authors 0270-6474/11/3113786-10$15.00/0

13786 • The Journal of Neuroscience, September 28, 2011 • 31(39):13786 –13795



state, and reveal stationarity in the fMRI signal not matched by
its electrical counterpart.

Materials and Methods
fMRI data acquisition. Blood oxygen-level dependent fMRI data (4 � 4 �
4 mm voxels; TE, 25 ms; TR, 2.16 s) were acquired in 17 normal right-
handed young adults using a 3 T Siemens Allegra MR scanner. Subjects
were recruited from the Washington University area (nine females and
eight males; age, 18 –27 years). All subjects completed eight fMRI runs,
each 194 frames (7 min) in duration. They consisted of two alternating
run types. The first run type was a resting-state fixation run in which a
white crosshair was presented in the center of a black screen. Subjects
were instructed to look at the crosshair, remain still, and to not fall asleep.
The second run type was a button-press run in which the identical cross-
hair was presented, but now it occasionally changed from white to dark
gray for a period of 250 ms. Subjects were instructed to press a button
with their right index finger as quickly as possible when they saw the
crosshair dim. They were told that their reaction times would be re-
corded. Each of these button-press runs contained 20 crosshair dims
time locked to the scanner TR, with an intertrial interval of 17.3–30.2 s.
Subjects practiced this button-press task once in the scanner, before the
onset of the functional scans. Anatomical MRI included a high-
resolution (1 � 1 � 1.25 mm) sagittal, T1-weighted MP-RAGE (TR,
2.1 s; TE, 3.93 ms; flip angle, 7°) and a T2-weighted fast spin echo scan.

fMRI data preprocessing. fMRI preprocessing steps included the fol-
lowing: first, compensation of systematic, slice-dependent time shifts;
second, elimination of systematic odd– even slice intensity difference
attributable to interleaved acquisition; third, rigid body correction for
interframe head motion within and across runs; and fourth, intensity
scaling to yield a whole-brain mode value of 1000 (with a single scaling
factor for all voxels). Atlas registration was achieved by computing affine
transforms connecting the fMRI run first frame (averaged over all runs
after cross-run realignment) with the T2- and T1-weighted structural
images (Ojemann et al., 1997). Our atlas representative template in-
cluded MP-RAGE data from 12 normal individuals and was made to
conform to the 1988 Talairach atlas (Talairach and Tournoux, 1988).
The first four frames of each fMRI run were discarded in all additional
analyses. For each voxel, the time course from each fMRI run was made
zero mean, and head motion and its temporal derivative were removed
by linear regression.

PET data acquisition. The PET dataset used in this study was published
previously by Vaishnavi et al. (2010); the methods for acquiring the data
and calculating regional variations in cerebral metabolic rate for oxygen
and glucose (CMRGlu), cerebral blood flow, cerebral blood volume, and
glycolytic index (GI) were described in detail in that study. The method
for obtaining the oxygen extraction fraction (OEF) values was described
in detail previously by Raichle et al. (2001).

Definition of regions of interest. Thirty-one regions of interest (ROIs)
were obtained from our previous task-related functional neuroimaging
studies or generated using coordinates from published fMRI studies,
which included 10 pairs of homologous brain regions. These ROIs were
the same as used in our previous study (He et al., 2010, their Fig. 5). Their
locations in the brain are shown in Figure 1 (mapping to brain surface
was done in CARET, http://brainvis.wustl.edu/wiki/index.php/Caret:
About). The regions were grouped into five cortical networks based on
their known anatomical/functional properties (including attention,
default-mode, motor, saliency, and visual networks) and a separate
group outside the neocortex (including hippocampus, thalamus, and
cerebellum).

The anatomical locations, Talairach coordinates, references, and asso-
ciated networks of these ROIs are listed in Table 1. Specifically, the atten-
tion, motor, visual, thalamus, and cerebellum regions were obtained
from functional studies conducted by He et al. (2007). The default net-
work regions were obtained from task-deactivation patterns from a
meta-analysis of nine PET studies, which originally unveiled the default
network (Shulman et al., 1997). To generate these ROIs, following meth-
ods described by He et al. (2007), the activation or deactivation Z-score
maps were subjected to an automatic peak search, peaks closer than 10
mm were consolidated by averaging their coordinates, and ROIs were

defined around peaks by thresholding the map to yield regions of �905
mm 3, a similar size as the coordinates-derived ROIs described below.

The dorsolateral prefrontal cortex (DLPFC), part of the frontoparietal
attentional network, and the saliency (also called “core task control”)
network regions were obtained from published coordinates in three
studies (Dosenbach et al., 2006; Seeley et al., 2007; Vincent et al., 2008).
The coordinates for Broca’s area and the hippocampal formation (HF)
were obtained from Embick and Poeppel (2006) and Vincent et al.
(2006), respectively. In cases in which coordinates from multiple studies
were obtained for one ROI, such as the right DLPFC and right temporo-
parietal junction (Table 1), the center-of-mass of these coordinates were
used. A 6-mm-radius sphere ROI centered at these coordinates was cre-
ated for each region. All regions used in the present study have been
investigated in seed-based functional connectivity analyses applied to
resting-state fMRI data by the author and, for ROIs in the attention and
saliency networks as well as the HF, also in previous published studies
(Dosenbach et al., 2007; He et al., 2007; Seeley et al., 2007; Vincent et al.,
2006, 2008) and have yielded networks consistent with those reported in
the literature (Biswal et al., 1995; Fox et al., 2005, 2006; Damoiseaux et al.,
2006).

In addition, following Fox et al. (2007), the left somatomotor cortex
(LMC) was defined for each subject using task activation patterns from
the button-press fMRI runs, and the right somatomotor cortex (RMC)
was defined for each subject by using functional connectivity applied to
resting-state fMRI runs and the individual subject’s LMC region as seed
ROI.

Power spectrum calculation. The fMRI signal time course from each
ROI was extracted for each subject and fMRI run. The normalized or
non-normalized power spectrum of the fMRI signal was computed using
the Bartlett smoothing procedure of deriving the power spectral function
from the lagged autocorrelation or auto-covariance function, respec-
tively (Jenkins and Watts, 1998). A Tukey window of 20 fMRI frame
width was applied for additional smoothing. The power spectra were
then averaged across runs and subjects and across homologous ROIs,
resulting in an average power spectrum for each of 21 brain regions (Fig.
2 A). Finally, to obtain the power-law exponent �, the �0.1 Hz range of
each average power spectrum was fit with a power-law function: P( f ) �
1/f � using a least-squares fit. Using the low-frequency range to fit the
power-law exponent avoids aliasing artifact in higher-frequency range
(we used TR of 2.16 s, hence Nyquist limit is 0.23 Hz) and yields reliable
measurement of the scale-free distribution (Eke et al., 2002).

Scale-invariance definition. Power-law scaling behavior is indicative of
scale invariance: if P( f ) � 1/f �, then the ratio of P measured at two
different frequencies, f1 and f2, depends only on the ratio f1/f2 and not on
the absolute value of f1 or f2:

P( f1)/P( f2) � ( f2/f1) �. (1)

This means that a dynamic that follows power-law scaling in its power
spectrum contains no characteristic scale and thus is “scale free” (Man-
delbrot, 1999; Schroeder, 1991).

Detrended fluctuation analysis. To more robustly investigate the scale-
free behavior of the fMRI signal, we used the well-established detrended
fluctuation analysis (DFA) method (Linkenkaer-Hansen et al., 2001; Eke
et al., 2006), which was initially introduced to study correlations in DNA
sequences (Peng et al., 1994). The DFA method has the particular advan-
tage of being applicable to both stationary and nonstationary data. First,
the signal is summed and the mean is subtracted:

yj � �
i�1

j

xi � �̂. (2)

Then the local trend yj,l is estimated in non-overlapping windows of
equal length l, using a least-squares fit to the data. For a given window size
l, the fluctuation Fl is determined as the root mean square variance on the
local trend:
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Fl � �1

l �
j�1

l

� yj � yj,l�
2. (3)

and then averaged across windows. For a scale-free time series, the fluc-
tuation Fl is related to window size l by

Fl � pl � (4)

or

log(Fl) � log(p) � �log(l). (5)

If 0 � � � 1, then x is a stationary time series, and its Hurst exponent H �
�. If � � 1, then x is nonstationary, and its Hurst exponent H � � 	 1
(Mandelbrot and Van Ness, 1968; Eke et al., 2002). The Hurst exponent
H characterizes the self-similarity of the integral of the original data:

yi,n �ds	Hyi,sn, (6)

where yi,n is a sample time series of length n, yi,sn is a longer sample of the
same process of length sn, and �d means equal in distribution (Hurst,
1951).

To analyze our fMRI data, window lengths of 5, 10, 19, 38, and 95 fMRI
frames were chosen so that the number of frames in each run (190 after
discarding the first four frames) is an integer multiple of the window
length. The � of the fMRI signal in our data always resided within the
region of (0, 1), indicating that the fMRI signal is stationary in first- and
second-order statistics. Hence, the Hurst exponent was conveniently es-
timated by �.

Goodness-of-fit test for scale invariance. To test how well scale invari-
ance describes the fMRI signal from a particular brain region, we adapted
a goodness-of-fit test developed for testing power-law distributions
(Clauset et al., 2009). For each brain region, its time series (4 fMRI
runs � 190 frames for each behavioral condition) were extracted from
each subject and subjected to DFA. The variance and Hurst exponent
were computed and averaged across subjects. The Kolmogorov–Smirnov
statistic was used to measure the distance D between its log( F)–log(l )
plot and the best-fit linear-regression line in the log–log plot. Then, 1000
time series of fractional Gaussian noise (fGn) with the same length (n �
760), variance, and Hurst exponent were generated using a circulant
embedding algorithm (Helgason et al., 2011). Fractional Gaussian noise
is a parsimonious model of stationary scale-free dynamics (Mandelbrot
and Van Ness, 1968; Beran, 1994). Each synthetic fGn time series was

Figure 1. Locations of the ROIs. The 31 ROIs, including 10 pairs of homologous brain regions, are color coded by their affiliated brain networks. A, Volume view. B, Surface view.
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subjected to the same DFA, and the Kolmogorov–Smirnov statistic was
used to measure the distance Ds between its log( F)–log(l ) plot and its
own best-fit linear-regression line. The p value is defined as the fraction
of synthetic time series with Ds that is larger than the original D of the
fMRI time series. The larger the p value, the more plausible the fGn
model is for representing the original fMRI time series, and the better the
fit of the original data to a scale-free distribution. The hypothesis that the
fMRI signal is scale free is ruled out if p � 0.05.

Results
fMRI power-law exponent varies across brain networks,
correlates with variance and glucose metabolism
Thirty-one ROIs were defined based on our previous functional
studies or published articles, covering key nodes of five known

brain networks (attention, default-mode, motor, saliency, and
visual) and three additional regions outside the neocortex (hip-
pocampus, thalamus, and cerebellum) (Fig. 1, Table 1). The fMRI
power-law exponent, variance, and metabolic values were ex-
tracted from each ROI and then averaged across 10 pairs of ho-
mologous ROIs, resulting in 21 brain regions in total.

In our previous study (He et al., 2010), fMRI signals were
passed through conventional functional connectivity preprocess-
ing (Fox and Raichle, 2007) (spatial smoothing, mean subtrac-
tion, regression of head motion, ventricular, white matter, and
whole-brain signals) before power spectral calculation. Here, to
stay closer to the raw fMRI signal, we subjected it only to mean
subtraction and regression of head motion (see Materials and

Table 1. References, anatomical information, and scale-free goodness-of-fit tests for each region of interest (ROI), as well as the effect of behavioral condition (Rest versus
Task) on fMRI signal variance, power-law exponent, and Hurst exponent (paired t test; measurements from individual subjects were used as repeated measures, n � 17)

Network ROI Anatomical location Talairach coordinates

Goodness-
of-fit p
value

Variance
rest versus task

Power-law exponent
rest versus task

Hurst exponent
rest versus task

Rest Task t value p value t value p value t value p value

Attention vIPSa (L and R) ventral intra-
parietal sulcus

	24, 	69, 30 and 30, 	80, 16 0.42 0.27 2.143 0.048* 3.194 0.005*** 4.107 0.0008***

R TPJa,b R temporoparietal
junction

49, 	50, 28 0.37 0.95 1.663 0.116 1.718 0.105 2.63 0.018*

R DLPFCb,c,d R dorsolateral prefron-
tal cortex

43, 22, 34 0.45 0.53 1.319 0.206 2.494 0.024* 2.014 0.06

pIPSa (L and R) posterior
intraparietal sulcus

	25, 	63, 47 and 23 	65 48 0.17 0.55 1.268 0.223 2.733 0.015* 3.588 0.002***

MTa (L and R) middle tem-
poral region

	43, 	70 	3 and 42 	68 	6 0.56 0.48 0.947 0.358 3.592 0.002*** 3.649 0.002***

FEFa (L and R) frontal eye
field

	26, 	9, 48 and 32, 	9, 48 0.43 0.87 2.445 0.026* 2.816 0.012* 3.11 0.007**

Default AGe (L and R) angular gyrus 	51, 	54, 30 and 45, 	66, 27 0.21 0.51 3.22 0.005*** 2.947 0.01** 3.363 0.004***
SFGe (L and R) superior

frontal gyrus
	15, 33, 48 and 18, 27, 48 0.80 0.98 2.334 0.033* 1.012 0.327 4.007 0.001***

PCCe Posterior cingulate
cortex

	6, 	45, 33 0.14 0.15 4.545 0.0003*** 2.033 0.059 2.531 0.02*

MPFe Medial prefrontal
cortex

	6, 51, 	9 0.65 0.54 1.423 0.174 2.296 0.035* 3.047 0.008**

FPe Frontopolar cortex 	3, 45, 36 0.72 0.09 2.679 0.016* 1.953 0.069 4.418 0.0004***
Motor L SIIa L second somatosen-

sory area
	57, 	27, 21 0.98 0.28 1.063 0.303 1.902 0.075 2.6 0.019

L motora L primary motor cortex 	39, 	27, 48 0.19 0.79 3.377 0.004*** 2.46 0.026* 4.487 0.0004***
Brocaf Broca’s area 	42, 13, 14 0.98 0.16 0.662 0.517 1.967 0.067 2.62 0.019*

Non-neocortical Thalamus (Tha)a (L and R) thalamus 	15, 	21, 6 and 9, 	18, 9 0.84 0.51 1.358 0.193 3.221 0.005*** 1.327 0.2
R Cerebelluma R Cerebellum 21, 	54, 	21 0.96 0.32 0.927 0.368 1.938 0.07 2.353 0.03*
HFg (L and R) hippocampal

formation
	21, 	25, 	14 and 23, 	23, 	14 0.90 0.44 2.159 0.046* 2.075 0.05* 2.731 0.015*

Saliency R FIc R frontoinsular cortex 36, 21, 	6 0.40 0.84 3.349 0.004*** 2.596 0.02* 3.179 0.006**
dACCb Dorsal anterior cingu-

late cortex
	1, 10, 46 0.40 0.44 1.866 0.08 1.048 0.31 2.661 0.017*

Visual vRetinoa (L and R) ventral pri-
mary visual cortex

	15, 	75, 	9 and 15, 	75, 	9 0.09 0.34 2.902 0.01** 2.814 0.01** 2.599 0.019*

dRetinoa (L and R) dorsal pri-
mary visual cortex

	6, 	75, 9 and 9, 	75, 12 0.33 0.19 2.414 0.028* 3.243 0.005*** 2.694 0.016*

Individual-defined LMCh L primary motor cortex 4.714 0.0002*** 2.166 0.046* 4.053 0.0009***
RMCh R primary motor cortex 3.303 0.004*** 3.241 0.005*** 2.849 0.012*

*p � 0.05; **p � 0.01; ***p � 0.005.
aHe et al., 2007.
bDosenbach et al., 2006.
cSeeley et al., 2007.
dVincent et al., 2008.
eShulman et al., 1997.
fEmbick and Poeppel, 2006.
gVincent et al., 2006.
hFox et al., 2007.
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Methods, fMRI data preprocessing) and
reproduced previous results (Fig. 2A).
The spontaneous fMRI signal follows a
power-law distribution in its temporal
power spectrum: the power-law fit P( f) �
a/f� is highly significant (p � 0.0001,
power-law regression) for all 21 regions
(Fig. 2A).

Next, we compared the fit of several
alternative models to the fMRI power
spectrum. The power spectrum from each
brain region was fit (using least-squares
fitting) with (1) an exponential function,
(2) a log-normal function, (3) a power-
law function, and (4) a power-law func-
tion using only the �0.1 Hz frequency
region to avoid aliasing artifact in higher
frequencies (see Materials and Methods,
Power spectrum calculation). The Kolm-
ogorov–Smirnov distance D between the
original power spectrum and the fitted
function was computed and subjected to
paired t tests between different models
(Fig. 2B, with brain regions as repeated
measures). The power-law functions pro-
vided better fit to the data than exponen-
tial or log-normal function. Power-law
function using only the �0.1 Hz
frequency region provided significantly
better fit than exponential (p � 0.05),
log-normal (p � 0.0005), or power-law
function using the entire frequency region (p � 0.02).

We thus obtained power-law exponent � by fitting a power-
law function to the �0.1 Hz frequency region of the power spec-
trum. The power-law exponent � ranged from 0.62 (left second
somatosensory area) to 1.14 (ventral primary visual cortex). The
mean of � across 21 brain regions was 0.84. Power-law exponent
� was significantly different across brain networks (Fig. 2C, p �
0.0076, assessed by an ANOVA), being largest in visual, saliency,
and default-mode networks and smallest in motor network and
non-neocortical regions. In contrast, the variance of the fMRI signal
did not differentiate between brain networks (p � 0.5, assessed by an
ANOVA). Nevertheless, there was a significant correlation between
fMRI signal variance and power-law exponent (Fig. 3A, r � 0.517,
p � 0.015).

Interestingly, among brain metabolic values, CMRGlu (p �
0.007), GI (p � 0.0001), and OEF (p � 0.006) also differentiated
between brain networks (Fig. 2D, assessed by ANOVA). Hence,
OEF is not as uniform across the brain as suggested previously
(Raichle et al., 2001). Nonetheless, OEF in the default-mode net-
work was close to the whole-brain mean (1.4% lower, p � 0.4),
confirming a previous conclusion that it is not spontaneously
active at rest (Raichle et al., 2001). The networks with largest
deviation of OEF from the whole-brain mean are the saliency
network comprising the dorsal anterior cingulate cortex and
frontoinsular cortex (5.5% lower than the whole-brain mean,
implying spontaneous activation, p � 0.05) and the visual cortex
(10.4% higher than the whole-brain mean, implying deactivation
likely attributable to eye closure during these scans, p � 0.0001).

Correlating the fMRI power-law exponent and variance
with brain metabolic values, we found a significant correla-
tion between power-law exponent and CMRGlu (r � 0.514,
p � 0.016) (Fig. 3B). No significant correlation between fMRI

signal variance and any of the metabolic values was found (all
p � 0.2).

The fMRI signal is scale free; its Hurst exponent correlates
tightly with power-law exponent
Although power-law scaling provides a good fit to the fMRI
power spectrum (Fig. 2 A, B), to rigorously test the hypothesis
that fMRI signals are scale free, we applied a more robust
time-domain method, DFA, which complements the above
frequency-domain approach, and then used goodness-of-fit
tests to examine how well scale invariance describes fMRI
signals.

The DFA procedure measures the amount of fluctuation F of
detrended integrated signal at different length scales, thereby re-
vealing the scaling properties of the signal. If the signal is scale

Figure 2. Power spectra of spontaneous fMRI signals and the variations of power-law exponent and metabolic values across
brain networks. A, Normalized temporal power spectrum (i.e., power spectral density) of spontaneous fMRI signals under resting
state extracted from 21 brain regions covering five different brain networks. Lines are color coded by brain networks: magenta,
default-mode network; blue, attention network; green, motor network; cyan, saliency network; orange, visual network; red,
non-neocortical regions. B, Comparison of fits by different models to the fMRI power spectrum. The four models are exponential,
log-normal, power-law, and power-law using only the low-frequency (�0.1Hz) (Power-law LF) region. The Kolmogorov–Smir-
nov distance D between the original data and its least-squares fit by each model was calculated for each brain region, and paired
t tests were used to compare different models. C, Variation of power-law exponent across brain networks (p � 0.0076, assessed by
an ANOVA). D, Variations of CMRGlu (p �0.007), OEF (p �0.006), and GI (p �0.0001) across brain networks, assessed by ANOVA.
HC, Hippocampus; Tha, thalamus. Error bars denote SEM. For other abbreviations, see Table 1.

Figure 3. fMRI power-law exponent correlates with variance and CMRGlu. A, A scatter plot
showing the values of power-law exponent and variance of the fMRI signal for each of 21 brain
regions (correlation, r � 0.517, p � 0.015). The best-fit linear-regression line is shown. The
outlier indicated by circle is the hippocampal formation (HC), with a very high variance but small
power-law exponent. The r and p values were computed including the hippocampal formation.
B, A scatter plot showing fMRI signal power-law exponent and regional CMRGlu value for each
of 21 brain regions (r � 0.514, p � 0.016).
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invariant, then F scales with length scale l in a power-law manner:
Fl � pl �, and log(F) is linearly related to log(l). The slope � of the
log(F)–log(l) plot estimates the Hurst exponent H, the single
parameter that describes the scale-invariant properties of a self-
similar signal (see Materials and Methods, Detrended fluctuation
analysis).

The log(F)–log(l) plots obtained by DFA follow an approxi-
mately straight line for all 21 brain regions (Fig. 4A), indicating
scale invariance. Goodness-of-fit tests suggested that scale invari-
ance is a good description for all 21 brain regions (Fig. 4D, Table
1, all p � 0.05; with the exception of one region, all p � 0.1).

From the DFA plots, Hurst exponent H was estimated for each
of 21 brain regions. H was tightly correlated with the power-law
exponent estimated from the power spectrum (Fig. 4C, left, r �
0.92, p � 10	8). It also reproduced all of the results obtained
using the power-law exponent � (Figs. 2C, 3): H differentiated
between brain networks (Fig. 4B, p � 0.017, ANOVA) and cor-
related with fMRI signal variance (Fig. 4C, middle, r � 0.59, p �
0.004) and brain glucose metabolism (Fig. 4C, right, r � 0.44, p �
0.05) but not with the other brain metabolic measurements.

The effect of task performance on fMRI signal variance,
power-law exponent, and Hurst exponent
Next, we investigated the effect of task performance on fMRI
signal variance and scale-free properties. Goodness-of-fit tests on
the DFA measurements suggested that the fMRI signals in all 21
brain regions remain scale free during task performance (all p �
0.05; with the exception of one region, all p � 0.1; see Table 1).
Remarkably, across 21 brain regions covering all lobes and five

major brain networks, fMRI signal power-law exponent, Hurst
exponent and variance decreased in every brain region during
task performance (Fig. 5A). The effect of task performance on
variance (p � 0.0003), power-law exponent (p � 10	8), and
Hurst exponent (p � 0.0005) were all highly significant (paired t
tests across all brain regions). To test which brain regions had a
significant decrease in these measurements by themselves, we
performed a paired t test for each brain region using individual
subjects’ data as repeated measures (n � 17) and found a signif-
icant task effect on variance in 11 of 21 regions, on power-law
exponent in 13 of 21 regions, and on Hurst exponent in 19 of 21
regions at p � 0.05 level (uncorrected; Table 1). The only two
brain regions whose Hurst exponent did not change significantly
under task performance were right DLPFC (p � 0.06) and thal-
amus (p � 0.2).

Notably, the power-law exponent, Hurst exponent, and vari-
ance of the fMRI signal decreased not only in task-activated brain
areas, including the visual, motor, attention, and saliency net-
works, but also in task-deactivated default-mode network (for
task activation/deactivation maps from two typical subjects, see
Fig. 6). This finding parallels previous results showing that fMRI
signal variance not only decreased in visual cortex during eyes-
open condition compared with the eyes-closed condition (McA-
voy et al., 2008; Bianciardi et al., 2009) but also decreased in
default-mode network during deactivation under a working
memory task (Fransson, 2006).

We further defined in each subject the LMC and its homolo-
gous RMC based on task activation and functional connectivity,
respectively (see Materials and Methods, Definitions of regions of

Figure 4. DFA and Hurst exponent of spontaneous fMRI signals. A, DFA plots for 21 brain regions, showing fluctuation ( F) measured at different window lengths (l ) plotted in double-logarithmic
scales. B, Variation of Hurst exponent across brain networks, assessed by an ANOVA (p � 0.017). C, Hurst exponent correlates with power-law exponent (r � 0.92, p � 10 	8), variance (r � 0.59,
p � 0.004), and CMRGlu (r � 0.44, p � 0.05). D, Goodness-of-fit test for one example region—frontal eye field (FEF)— on its fit to a scale-free distribution (p � 0.43). The red line with dots is
the raw F–l plot for the FEF time series, and the red line without marker is its least-squares power-law fit. The blue lines are the F–l plot for 1000 synthetic fGn time series with the same variance and
Hurst exponent as the FEF time series and their respective least-squares power-law fit. HC, Hippocampus. For other abbreviations, see Table 1.
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Figure 6. Task-induced activation and deactivation patterns from two example subjects. A general-linear model with an event-related design was used to generate t-score maps, which were
converted to equally probable Z-score maps, and thresholded at Z � 3 for both activations (shown in red–yellow) and deactivations (shown in blue– green).

Figure 5. The effect of task performance on fMRI signal variance and scale-free properties. A, fMRI signal power-law exponent (left), Hurst exponent (middle), and variance (right) for each of 21
brain regions during rest and task. For statistical results on the effect of task, see Results and Table 1. B, fMRI signal power spectra during rest and task (without normalization by total power) were
computed for the LMC and RMC regions individually defined for each subject and then averaged across 17 subjects. Significant decrease of variance, power-law exponent, and Hurst exponent were
found in both regions (for values, see Results and Table 1). Inset, The distribution of intertrial intervals of the button-press task. For abbreviations, see Table 1.
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interest). Across all subjects, all three measurements—fMRI sig-
nal variance, power-law exponent, and Hurst exponent— de-
creased in both regions during task (variance: LMC, p � 0.0002;
RMC, p � 0.004; power-law exponent: LMC, p � 0.05; RMC, p �
0.005; Hurst exponent: LMC, p � 0.0009; RMC, p � 0.01, paired
t tests). The power spectra of these two regions during rest and
task are shown in Figure 5B. During task, there are two discern-
able peaks at �0.05 and 0.1 Hz in the power spectrum of LMC.
Although the onset of the stimulus was unpredictable to the sub-
jects, the distribution of the intertrial intervals had a peak at
20 –22 s (Fig. 5B, inset), corresponding to 0.05 Hz (the 0.1 Hz
peak is its harmonic). This suggests that implicit structure in task
design, unbeknownst to the subject, can nevertheless entrain the
fMRI signal into regular oscillations.

Discussion
Scale-free dynamics are present across many different spatiotem-
poral scales in the brain: from neurotransmitter release (Lowen et
al., 1997), neuronal spike trains (Grüneis et al., 1989; Lowen et al.,
2001), network firing rates (Garcia-Perez et al., 2007; Mazzoni et
al., 2007), field potentials (Freeman and Zhai, 2009; Manning et
al., 2009; Miller et al., 2009; Milstein et al., 2009; He et al., 2010),
to fMRI signals. They are also prevalent in the cognition and
behaviors produced by the brain, such as human performance
fluctuations (Gilden, 2001), music and speech (Voss and Clarke,
1975), and fruit fly flight behaviors (Maye et al., 2007). However,
their spatiotemporal structures, functional properties, and un-
derlying mechanisms have so far remained elusive.

Here we have shown that fMRI signals belong to the class of
scale-free brain activity. This is in line with its recently discovered
correlation with the slow cortical potential (SCP) (He et al., 2008;
He and Raichle, 2009), the low-frequency end of scale-free brain
field potentials (He et al., 2010). The current results, showing that
scale-free properties of the fMRI signal differentiate between
brain networks, correlate with brain glucose metabolism and al-
ter during task performance strongly suggest the functional sig-
nificance and neuronal origins of scale-free fMRI signals.
Furthermore, whereas electrical field potentials are a combina-
tion of scale-free brain activity and brain oscillations (He et al.,
2010), the spontaneous fMRI signal does not seem to contain any
oscillation but rather is composed mainly of scale-free activity,
like its electrical counterpart SCP.

Importantly, the current findings mirror previous electro-
physiological observation that the power-law exponent and vari-
ance of the SCP decrease in task-activated brain regions (He et al.,
2010), reinforcing the correlation between the fMRI signal and
the SCP (He and Raichle, 2009). Larger power-law exponent sug-
gests higher time-lagged autocorrelation, indicating that the past
dynamics of the system has stronger influence on its future dy-
namics, i.e., the system has more long-range memory (Mandel-
brot and Van Ness, 1968; Eke et al., 2002). In contrast, smaller
power-law exponent suggests that the system has less temporal
redundancy and is more efficient in online information process-
ing. Hence, these findings fit well with the need for the system to
process incoming information in an activated state and the need
to maintain memory and plan for future during the baseline state
(Berkes et al., 2011). In remarkable parallel to these physiological
findings, fluctuations in human behavioral performance during
psychological tasks also exhibit a scale-free power spectrum
(Gilden, 2001), and the power-law exponent decreases with in-
creasing task difficulty (Clayton and Frey, 1997). Thus, previous
findings showing that patients with more anxiety had smaller
fMRI signal power-law exponent (Tolkunov et al., 2010) can be

interpreted as these patients’ brains being constantly activated in
light of the present results (note that this study published power
spectrum of differentiated fMRI signal, which decreases � by 2).
Similarly, previous results showing that fMRI signal Hurst expo-
nent is larger in patients with Alzheimer’s disease (AD) than in
age-matched controls (Maxim et al., 2005) implicates that these
patients’ brains are less efficient at processing information (note
that “long-range memory” discussed herein refers to time-lagged
autocorrelation at the range of seconds to minutes and do not
correspond to episodic memory encoded in the structures of neu-
ronal networks that is disrupted in AD).

We found that fluctuations and long-range memory of the
fMRI signal are largest during baseline condition and, moving
away from this baseline— either activation or deactivation—at-
tenuates the fluctuation and reduces long-range memory, indi-
cating that the system has an optimal dynamic range (Fig. 7). This
is consistent with the observations that fMRI signal variance not
only decreases in the default-mode network during deactivation
under a working memory task (Fransson, 2006) but also de-
creases in visual cortex during activation (McAvoy et al., 2008;
Bianciardi et al., 2009). Our results extend these previous find-
ings by showing that a reduction of the memory span in the fMRI
signal accompanies the task-induced reduction of variance.

Such widespread changes in fMRI signal variance and power-
law exponent contrast with the more localized change in the
power-law exponent of brain electrical field potentials under a
similar task, which occurred mainly in visual and motor areas
(He et al., 2010). The exact reason for this difference is yet un-
clear, but it resonates with the impression in the literature that
measurements from electrophysiological signals are often more
localized than fMRI signals under similar types of tasks (Sirotin
and Das, 2009; Ojemann, 2010). An intriguing possibility is that
the fMRI signal, more than electrical field potentials, reflects a
behavioral state change. Presently, it is unclear what happens to
the variance and power-law exponent of the SCP in default-mode
network under task-induced deactivation. Filling in this gap
would help reveal the extent to which the fMRI signal follows
brain field potentials.

The power-law exponent of the fMRI signal being �1 is an
indication of stationarity in the first- and second-order statistics
(Mandelbrot and Van Ness, 1968; Eke et al., 2002). This is cor-
roborated by our DFA, which revealed � to be �1 for all brain

Figure 7. Schematic showing the effect of task on fMRI signals. The present results reveal
that the fMRI signal variance, power-law exponent, and Hurst exponent decrease in both task-
activated and -deactivated brain regions, suggesting that the dynamic range and long-range
memory of the fMRI signal are largest during the baseline resting state. The curves in the top
were modeled using Gaussian-distributed white noise filtered in the frequency domain by P �
1/f �, with � equal to the power-law exponent averaged across the 21 brain regions (rest, 0.83;
task, 0.69). The variance during activation/deactivation was modeled as 97.8% of that during
rest (average value across 21 brain regions).
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regions, again suggesting that the fMRI signal is stationary (Eke et
al., 2002). In contrast, brain electrical field potentials have a
power-law exponent that is in the range of 2– 4 (Freeman and
Zhai, 2009; Miller et al., 2009; Milstein et al., 2009; He et al.,
2010), signifying nonstationarity, which is a common impression
of brain electrophysiological signals (Niedermeyer and Lopes da
Silva, 2005). This notable difference between fMRI signals and
brain electrical field potentials argues that future models of neu-
rovascular coupling should take into account the transformation
from nonstationarity to stationarity. Crucially, this cannot be
achieved by conventional convolution with a hemodynamic re-
sponse function, which is equivalent to a simple low-pass filter in
the frequency domain.

In summary, we have shown that the fMRI signal recorded
from the human brain belongs to the class of scale-free dynamics,
and its scale-free properties alter with the functional state of the
brain. During rest, the power-law exponent of the fMRI signal
differentiates among brain networks and correlates with brain
glucose metabolism. During task state, the variance and long-
range memory of the fMRI signal decrease across widespread
brain regions, suggesting that the dynamic range of the fMRI
signal is largest and the temporal memory is longest during rest.
The decrease of long-range memory during task is consistent
with more efficient online information processing. Such changes
in temporal memory contained in the fMRI signal and brain
electrical field potentials between rest and task are suggestive of
corresponding processes at the cellular/synaptic or neuronal net-
work level, which strongly invite future investigation. We here
propose that decorrelation or decoupling among neuronal
groups during task state (e.g., Poulet and Petersen, 2008) may
translate into decreased temporal memory recorded in field po-
tentials or fMRI signals. We eagerly anticipate future empirical
and modeling tests of this hypothesis. Last but not least, the sta-
tionarity of the fMRI signal on the one hand and the nonstation-
arity of brain field potentials on the other hand, revealed by their
respective scale-free parameters, argue that future models of neu-
rovascular coupling should take into account the transformation
from a nonstationary signal to a stationary one.
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