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Spontaneous and Task-Evoked Brain Activity Negatively
Interact
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A widely held assumption is that spontaneous and task-evoked brain activity sum linearly, such that the recorded brain response
in each single trial is the algebraic sum of the constantly changing ongoing activity and the stereotypical evoked activity. Using
functional magnetic resonance imaging signals acquired from normal humans, we show that this assumption is invalid. Across
widespread cortices, evoked activity interacts negatively with ongoing activity, such that higher prestimulus baseline results in less
activation or more deactivation. As a consequence of this negative interaction, trial-to-trial variability of cortical activity decreases
following stimulus onset. We further show that variability reduction follows overlapping but distinct spatial pattern from that of
task-activation/deactivation and it contains behaviorally relevant information. These results favor an alternative perspective to
the traditional dichotomous framework of ongoing and evoked activity. That is, to view the brain as a nonlinear dynamical system
whose trajectory is tighter when performing a task. Further, incoming sensory stimuli modulate the brain’s activity in a manner
that depends on its initial state. We propose that across-trial variability may provide a new approach to brain mapping in the
context of cognitive experiments.

Introduction
A recent revolution in neuroscience has brought the recogni-
tion that spontaneous brain activity is not only relevant but
indeed crucial to normal brain functioning (Arieli et al., 1996;
Yuste, 1997; Tsodyks et al., 1999; Kenet et al., 2003; Fiser et al.,
2004; Raichle, 2006; Fox and Raichle, 2007; He et al., 2007;
Luczak et al., 2009; Berkes et al., 2011). Despite a series of
elegant studies exhibiting the influence of spontaneous brain
activity on behavioral performance (Boly et al., 2007; Fox et
al., 2007; Hesselmann et al., 2008a, 2008b), an important un-
resolved question pertains to the relationship between spon-
taneous brain activity and task-evoked brain responses.
Currently, standard models posit that spontaneous and task-
evoked brain activity linearly superimpose, such that the re-
corded brain activity in each single trial is the algebraic sum of
the constantly changing ongoing activity and the stereotypical
evoked response (Arieli et al., 1996; Azouz and Gray, 1999; Fox
et al., 2006; Saka et al., 2010; Becker et al., 2011). However,
interaction between ongoing and evoked brain activity was
observed in anesthetized rodents under burst firing (Kisley
and Gerstein, 1999), and up-and-down states (Petersen et al.,

2003), such that the magnitude of the evoked activity de-
pended on the preceding ongoing activity. Moreover, a recent
study by Scheeringa et al. (2011) showed that the amplitude of
evoked functional magnetic resonance imaging (fMRI) re-
sponses depended on the phase of electroencephalography
(EEG) alpha oscillation at stimulus onset. Nevertheless, due to
EEG’s poor spatial resolution and the complex relationships
between electrophysiological and fMRI signals (for reviews,
see Logothetis, 2008; He and Raichle, 2009), the extent of such
an interaction between ongoing and evoked brain activity in
awake humans remains unclear.

The importance of this question is underscored by the fact
that hitherto the most fruitful method of estimating the
brain’s response to a stimulus has been to average across many
trials (Dawson, 1951; Gerstein, 1960; Friston et al., 1995; Dale
and Buckner, 1997). The implicit assumption of this approach
is that each time a stimulus is presented, the brain responds in
a similar way and its response is embedded within the con-
stantly changing ongoing activity; thus, averaging across trials
suppresses the ongoing activity and recovers the evoked re-
sponse. If the condition of linear superposition were fulfilled,
this method would recover the evoked response veridically, so
long as enough trials of the same condition are included. How-
ever, if there were variability in the evoked responses and that
variability interacted with the ongoing activity, then the aver-
aged response would provide an incomplete picture of a brain
region’s involvement in a task.

We set out to test the linear-superposition model. Our find-
ings contradict this previous model and reveal instead substantial
negative interaction between ongoing and evoked activity. Each
time a stimulus is presented, the brain changes its state in a
unique way and in a manner that depends on its initial condition.
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While these results do not invalidate the classical trial-averaging
approach, they reveal additional behaviorally relevant informa-
tion in the data not captured by these previous methods.

Materials and Methods
FMRI data acquisition. Blood-oxygen-level-dependent (BOLD) fMRI
data (4 � 4 � 4 mm 3 voxels; TE, 25 ms; TR, 2.16 s) were acquired in
17 normal right-handed young adults (9 females; age, 18 –27 years)
using a 3T Siemens Allegra MR scanner. All subjects gave informed
consent in accordance with guidelines set by the Human Studies
Committee of Washington University in St. Louis. Each subject com-
pleted eight fMRI runs, each 194 frames (�7 min) in duration. They
consisted of two alternating run types. The first run type was a
resting-state study in which a white crosshair was presented in the
center of a black screen. Subjects were instructed to look at the cross-
hair, remain still, and to stay awake. The second run type was a task
study in which the identical crosshair was presented, but now it oc-
casionally changed from white to dark gray for a period of 250 ms and
at times unpredictable to the subjects. The subjects were instructed to
press a button with their right index finger as quickly as possible when
they saw the crosshair dim. Each of these button-press runs contained
20 crosshair dims time-locked to the scanner TR, with an intertrial
interval of 17.3–30.2 s. Subjects practiced this button-press task once
in the scanner and before the onset of the functional scans. Anatom-
ical MRI included a high-resolution (1 � 1 � 1.25 mm 3) sagittal,
T1-weighted MP-RAGE (TR, 2.1 s; TE, 3.93 ms; flip angle, 7°) and a
T2-weighted fast spin-echo scan. All analyses were carried out using
custom-written codes in C�� and Matlab. Other analyses using this
dataset not relevant to the current hypotheses were previously pub-
lished in Fox et al. (2007) and He (2011).

FMRI data preprocessing. FMRI preprocessing steps included (1) com-
pensation of systematic, slice-dependent time shifts; (2) elimination of
systematic odd– even slice intensity difference due to interleaved acqui-
sition; (3) rigid body correction for interframe head motion within and
across runs; and (4) intensity scaling to yield a whole-brain mode value of
1000 (with a single scaling factor for all voxels). Atlas registration was
achieved by computing affine transforms connecting the fMRI run first
frame (averaged over all runs after cross-run realignment) with the T2-
weighted and T1-weighted structural images (Ojemann et al., 1997). Our
atlas-representative template included MP-RAGE data from 12 normal
individuals and was made to conform to the 1988 Talairach atlas (Ta-
lairach and Tournoux, 1988). Data were resampled to 3 � 3 � 3 mm 3

voxels after atlas registration. The first four frames of each fMRI run were
discarded in all further analyses. The fMRI time courses from each run
were detrended, and the effect of head motion and its temporal de-
rivative were removed by linear regression. Last, the time courses

were normalized by the mean of each run and transformed into per-
cent change unit.

Definition of regions of interests. Methods for defining the regions of
interests (ROIs) have been described in detail in a previous paper (He,
2011). Thirty-one ROIs were obtained from our previous task-related
functional neuroimaging studies or generated using coordinates from
previous published fMRI studies. The anatomical locations, Talairach
coordinates, references, and associated networks of these ROIs are
listed in Table 1 of He (2011). In addition, as in He (2011), the left
hand-motor cortex (LMC) was defined for each subject using task-
activation patterns from the button-press fMRI runs, and the right
hand-motor cortex (RMC) was defined for each subject using func-
tional connectivity applied to resting-state fMRI runs and the indi-
vidual subject’s LMC region as the seed ROI. This resulted in 33 ROIs
in total.

Trial-to-trial variability and task-activation analyses. For task data,
fMRI signals were epoched at eight time points surrounding stimulus
onset: �1.08, 1.08, 3.24, 5.4, 7.56, 9.72, 11.88, and 14.04 s. Because it
takes 2.16 s (TR, 2.16 s) to acquire one full fMRI volume (e.g., the first
frame takes from 2.16 to 0 s before stimulus onset to acquire), we
assigned the time of each frame to the center time of acquiring this
frame. For Figure 3A, fMRI time courses were simply averaged across
trials for each subject, and then averaged across subjects. For Figure
3B, SD across all trials was computed at each time point surrounding
the stimulus onset in each subject. The SD time course from each
subject was normalized to the first frame before stimulus onset ac-
cording to the following equation:

�i,norm �
�i � �1

�1
� 100%

and then averaged across subjects.
Whole-brain voxelwise analysis. For Figures 1B and 4, activation

Z-score was assessed using a random-effects analysis across subjects on
fMRI signal amplitude for peak frame at 5.4 s against the prestimulus
frame at �1.08 s. Trial-to-trial SD (without normalization) was com-
pared between peak frame (5.4 s after stimulus onset) and the prestimu-
lus frame (�1.08 s) by a t test across subjects. Both SD t score and
activation Z-score were computed for all voxels within a gray-matter
mask defined on the atlas image. Both the activation Z-score and the SD
t score patterns were thresholded at a p � 0.05 level that was corrected for
multiple comparisons using the false-discovery rate method (Benjamini
and Hochberg, 1995). Plotting of slice images was done in Functional
Image Viewer (http://nrg.wustl.edu/software/fiv/). Plotting of ROIs and
activation Z-score on the cortical surface (Fig. 1) was produced in Caret
(http://brainvis.wustl.edu/wiki/index.php/Caret:About).

Figure 1. ROIs and task-activation/deactivation pattern. A, Thirty-one ROIs are color-coded by the networks they belong to. Non-neocortical regions included the left and right hippocampi, left
and right thalami, and the right cerebellum. B, Task-activation and task-deactivation patterns obtained from whole-brain voxelwise analysis. Random-effects analysis across subjects (for peak frame
at 5.4 s against the prestimulus frame) was used to obtain the Z-score.
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Analysis on the interaction between ongoing and evoked activity. To
assess the interaction between ongoing and evoked activity, we first
defined the following parameters: (1) B equals fMRI signal amplitude
at the first frame (�1.08 s before stimulus onset); (2) P equals fMRI
signal amplitude at the peak frame (5.4 s after stimulus onset); and (3)
D � P � B.

We then calculated rB,D as the Pearson correlation coefficient between
B and D across all trials for each subject. We averaged rB,D across subjects
after Fisher’s z transformation:

z �
1

2
ln

1 � r

1 � r
.

z�B,D �
1

N �
i�1

N

zB,D,

where N is the number of subjects. We then obtained the averaged rB,D

value by inverting Fisher’s z transformation:

rB,D �
e2z�B,D � 1

e2z�B,D � 1
.

This is the value plotted on the y-axis of Figure 5A (blue dots). Averaging
z values instead of r values avoids bias because the former is normally
distributed but the latter is not. In Figure 5B, zB,D values were used for
linear correlation.

Next, we obtained �B and �D as the SD of B and D values across all
trials in each subject, and then averaged them across subjects respec-
tively. These were used to calculate the x-axis values in Figure 5A. For rest
data, �B�, �D�, and rB�,D� were calculated as above, except on surrogate
trials obtained by applying event triggers from the task study to the
resting-state data.

Visualization of cortical activity before and after stimulus onset. To
visualize brain activity before and after stimulus onset, we plotted for
each trial a stretch of prestimulus and a stretch of poststimulus activ-
ity respectively as a dot in a three-dimensional space. The three di-
mensions are defined as three consecutive time points before stimulus
onset (�5.4, �3.24, and �1.08 s) for prestimulus activity, and
around peak response for poststimulus activity (5.4, 7.56, and 9.72 s).
For a cloud of dots, we can estimate the volume of the space occupied
by them as the product of the confidence interval in each dimension
(multiplied by a fixed parameter, which gets cancelled out in the
equation below). For each ROI and each subject, we calculated a
shrinking index (SI) defined as follows: Let Vpost be the volume of
space taken up by poststimulus data, and Vpre be the volume taken up
by prestimulus data. Then:

SI �
Vpre � Vpost

Vpre
� 100%.

Correlation with behavior. To assess whether variability reduction
contained behaviorally relevant information, hit trials from each sub-
ject were separated into two groups according to reaction times by a
median split. A two-sample F test on variance was conducted between
fast and slow trials (data were pooled across subjects) at four time
points around the peak response: 3.24, 5.4, 7.56, and 9.72 s following
stimulus onset respectively. Binomial statistics were used to assess
significance at the population level for each time point. For visualiza-
tion in Figure 7, across-trial SD for each group of task trials was
normalized to the prestimulus frame, and then averaged across
subjects.

Hemodynamic response modeling. To test whether the nonlinearities
present in the hemodynamic response might account for the present
results, we constructed a computational model. The balloon model as
detailed in Buxton et al. (1998) was adopted, with model parameters
taken from the empirically fit values in Friston et al. (2000): transit
time (�0), 0.98 s; resting oxygen extraction fraction (E0), 0.34; stiffness
(�), 0.33. The model was updated every 10 ms (sampling rate, 100 Hz)
and was run for 1676.2 s (i.e., the length of our task or rest study, 4

fMRI runs, 194 frames each). We aimed to model ongoing fMRI
signals with temporal properties similar to those observed empirically
(He, 2011). To this end, the input to the model, cerebral blood flow
(CBF, inflow), was modeled as a fractional Gaussian noise
(Mandelbrot and Van Ness, 1968; Beran, 1994) with mean equaling 1,
and Hurst exponent ( H) equaling 0.75. The latter value was empiri-
cally determined as there was a monotonic relationship between H of
the model input (CBF, inflow) and H of the model output (BOLD
signal); we found that H � 0.75 for the input gave a realistic H for the
simulated ongoing fMRI signal [H � 0.83, compared with H � 0.84
for empirical resting-state fMRI signals (He, 2011)]. One hundred
simulations of ongoing fMRI signals were run. Detrended fluctuation
analysis (for details, see He, 2011) was used to determine the Hurst
exponent for the output from each simulation. The fluctuation mag-
nitude of the simulated ongoing fMRI signal was characterized by
range and SD, and was also controlled to be similar to empirical data
(see Fig. 8A).

For the evoked component, we followed Friston et al. (2000) with the
following model parameters: neuronal efficacy (�), 0.5; signal decay (�s),
1 s, and autoregulation (�f), 2.46 s. We further simulated the underlying
neural activity as a square wave with duration d � 0.2 s. The simulated
evoked CBF response was subtracted by 1 (such that the initial value
equals 0) and then added to the ongoing CBF at every time point indi-
cated by the task trigger. This composite CBF inflow signal including
both ongoing and evoked components was used as the input to the bal-
loon model to generate the simulated BOLD signal, which was then
subjected to analyses similar to those on real data for trial-averaged re-
sponse and trial-to-trial variability. To cover the full range of the ampli-
tudes of empirically observed trial-averaged responses (see Fig. 3A), we
used 10 evenly spaced scaling factors for the evoked CBF response, which
yielded amplitudes of trial-averaged BOLD responses from the model
output in the range of 0.055 � 0.55%. For each of the 10 input amplitude
values, 1000 simulations were run, and the mean of 1000 simulations was
reported.

Results
Seventeen healthy volunteers performed a target detection
task while fMRI signals were acquired. Subjects were asked to
press a button with their right index finger as quickly as pos-
sible when they detected a visual cue. Each subject performed
80 trials in total. Their hit rate on average was 98.2%. We
defined a set of 31 ROIs, covering five major brain networks
likely involved in this task (visual, motor, attention, saliency,
and default-mode networks), as well as the thalamus, cerebel-
lum, and hippocampus (Fig. 1A). Task-activation/deactivation
patterns obtained from classical trial-averaging approach applied
to the whole brain in a voxelwise manner are shown in Figure 1B.
We further defined the LMC and RMC on a subject-by-subject
basis (see Materials and Methods). All ROIs were selected by
predefined criteria and not influenced by the current analyses.

The linear-superposition model posits that task-evoked re-
sponses do not interact with ongoing activity; hence, averag-
ing across trials suppresses the variability in ongoing activity
and recovers the “true” task-evoked response (Fig. 2i). How-
ever, at least two other scenarios are possible: task-evoked
activity could interact positively (Fig. 2ii) or negatively (Fig.
2iii) with ongoing activity. In the case of a positive interaction,
there is more activation or less deactivation at higher pre-
stimulus baseline values. Contrarily, under negative interac-
tion, there is less activation or more deactivation at higher
baseline values. In both positive-interaction and negative-
interaction schemes, if the sign of the evoked response flips
between different baseline values (i.e., activation in some trials
and deactivation in others), then single-trial brain responses
would be partially cancelled out when averaged together (Fig.
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2ii,iii; note that sign-flipping is a sufficient but not necessary
condition for interaction).

Trial-to-trial variability decreases following stimulus onset
To adjudicate between these three models, we tested their differ-
ential predictions on across-trial variability. Mathematically, the
law of variance sum dictates:

�X�Y
2 � �X

2 � �Y
2 � 2rX,Y�X�Y, (1)

where X and Y are two variables of interest, �X
2 and �Y

2 are their
respective variance, and rX,Y is the Pearson correlation coefficient
between them. If rX,Y � 0, Equation 1 reduces to Equation 2 as
follows:

�X�Y
2 � �X

2 � �Y
2 , (2)

which says that the variances of two independent variables sum
linearly.

Now, let X be the ongoing brain activity and Y be the evoked
brain response due to a stimulus, then X � Y is the observed brain
activity following a stimulus. We can make the following
predictions:

1. Under the linear-superposition model, ongoing and evoked
activity sum linearly without interaction (rX,Y � 0) and Equa-
tion 2 holds. Since there is likely some variability in the evoked
response contributing to variability in behavioral output,
which justifies the routine practice of averaging brain re-
sponses according to behavioral response types (e.g., hits vs
misses), we have �Y

2 	 0 and �X�Y
2 	 �X

2 (i.e., cortical
variability should increase after stimulus onset). Under the
limit condition of a stereotypical evoked response with zero
variability (�Y

2 � 0), across-trial variability stays the same
after stimulus onset (�X�Y

2 � �X
2 ).

2. Under the positive-interaction scheme, rX,Y � 0; hence, vari-
ability increases after stimulus onset (�X�Y

2 	 �X
2 ).

3. Under the negative-interaction scheme, there are two possi-

bilities: if rX,Y 
 �
�Y

2�X

 0, then variability decreases

following stimulus onset (�X�Y
2 
 �X

2 ); on the other hand,

if �
�Y

2�X

 rX,Y 
 0, then variability

still increases following stimulus onset
(�X�Y

2 	 �X
2 ).

In summary, if variability increased
following stimulus onset, all three models
are equally likely; by contrast, variability
decrease following stimulus onset is only
possible under the negative-interaction
scheme.

We thus computed trial-to-trial vari-
ability of fMRI signals for each ROI as the
SD across all trials at a particular time
point around the stimulus onset (Fig. 3B).
Remarkably, variability decreased in all 33
ROIs following stimulus onset (mean of
SD across poststimulus frames is less than
that of the prestimulus frame in all ROIs;
peak decrease across ROIs: mean, 7.9%;
range, 2.8 � 14.6%). This decrease was
significant in 19 of 33 ROIs (p � 0.05,
uncorrected; paired t-tests across 17 sub-
jects, poststimulus frame with the lowest
SD against the prestimulus frame). Under

the null hypothesis that variability does not change after stimulus
onset, �2 ROIs are expected to show a significant result at a p �
0.05 level due to the 33 multiple comparisons performed. Thus,
the above result is highly significant at the population level (p �
1e-16, binomial statistics). Comparing the SD time courses (Fig.
3B) with the classical trial-averaged time courses (Fig. 3A), it can
be seen that around the same time that the trial-averaged mean
response reaches its peak, across-trial variability reaches its
trough. As mentioned above, variability decrease as observed
here is only possible if ongoing and evoked activity negatively
interacted with each other (Fig. 2iii).

Trial-to-trial variability across the whole brain
To ensure that our choice of ROIs did not bias the current results,
we conducted a whole-brain voxelwise analysis. Across all voxels
in the gray matter, 86.8% showed decreased trial-to-trial variabil-
ity following stimulus onset. In addition, there was a significant
correlation between variability reduction and the absolute mag-
nitude of the classical trial-averaged response (Fig. 4A, r � �0.25,
p � 1e-256; number of voxels, N � 42,001). We used the absolute
magnitude here because, as Equation 1 shows, the comparison of
variability between poststimulus (�X�Y

2 ) and prestimulus (�X
2 )

period is blind to the sign of the evoked response (Y), but only
affected by the correlation between ongoing and evoked activity
(rX,Y) and, as we shall show later, rX,Y behaves similarly regardless
of whether the region is activated or deactivated.

Next, we compared the spatial pattern of task activation/de-
activation with that of variability reduction (Fig. 4B). To some
extent, variability reduction followed task activation in its spatial
pattern. However, there are brain areas with significant variabil-
ity reduction but nonsignificant change in the averaged response,
and vice versa. There were slightly more voxels reaching statistical
significance for task activation than for variability reduction,
likely due to the lesser sensitivity of the latter measurement with
equal amount of data, since each subject provided only one data
point for across-trial SD, but 80 data points for the magnitude of
the response (for a relevant discussion, see Gonzalez-Castillo et
al., 2012). Critically, no significant variability increase was found

Figure 2. Schematics illustrating three different models about the relationship between ongoing and evoked activity: i, No
interaction (also called “linear superposition”). ii, Positive interaction. iii, Negative interaction. The ongoing activity is shown in
gray. Evoked responses in single trials are shown in black. Recorded brain signal in an experiment is the sum of these two. The right
side of the graph shows the results of averaging across trials. For ii and iii, only one potential scenario is depicted. For example, all
of single-trial responses could be activation, but the magnitude of which still positively or negatively correlates with ongoing
activity. Note that the complete cancellation as depicted here is an ideal situation.
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across the brain. Such widespread variability reduction strongly
supports the negative-interaction model in Figure 2iii.

Interaction between ongoing and evoked activity
Theoretically, it is not possible to directly measure the interaction
between ongoing and evoked activity (rX,Y), because the ongoing
activity continues to vary after stimulus onset, and the recorded sig-
nal is the sum of this changing ongoing activity (	X) and the evoked
activity (Y). Nonetheless, the results presented thus far suggest that
there is a negative correlation between ongoing and evoked activity:
given Equation 1, if variability decreases following stimulus onset
(�X�Y

2 
 �X
2) as we have observed at both ROI level and whole-brain

voxelwise level, then rX,Y 
 �
�Y

2�X

 0.

As a proof of principle, we obtained the following measures
for each ROI in every trial: peak signal amplitude (5.4 s after
stimulus onset, P), baseline signal amplitude (1.08 s before stim-
ulus onset, B), and the difference between them (D � P � B). We
can now rewrite Equation 1 as follows:

�P
2 � �B

2 � �D
2 � 2rB,D�B�D, (3)

where �P
2, �B

2, and �D
2 are respectively the across-trial variances of

peak amplitude, baseline amplitude, and the difference be-
tween them, and rB,D is the correlation between B and D values
across trials. It is important to note that D included both the
evoked response ( Y) and the changing ongoing activity (	X ).

We found that for all except one ROI, rB,D 
 �
�D

2�B
(Fig.

5A, blue dots), which is consistent with our earlier observation
of �P � �B (Fig. 3B).

For comparison, we applied event triggers from task study to
resting-state data to obtain surrogate trials, from which similar pa-
rameters as above were defined (D��P��B�). Because resting-state
data is statistically homogeneous [fMRI signals are mean and vari-
ance stationary (He, 2011)], variability should not change after arti-
ficial triggers (i.e., �P� 
 �B�) . Given Equation 3, we can derive
Equation 4:

Figure 3. A, B, Trial-averaged fMRI signal (A) and across-trial SD (B) time courses for the 33 ROIs. Each line represents one ROI (averaged across subjects). Thick black lines show the average across ROIs.

Figure 4. Whole-brain voxelwise analysis. A, Correlation SD change t score (t test across subjects) and task-activation Z-score (absolute value, random-effects analysis across subjects) across all
voxels in the gray matter [defined by a gray-matter mask created from the atlas image; number of voxels ( N), 42,001]. Both measures were assessed for peak frame at 5.4 s versus the prestimulus
frame. Each dot represents one voxel. Red line indicates best linear-regression fit. B, Spatial patterns of voxels showing significant task activation/deactivation (orange and light blue respectively),
significant SD decrease (red), and the overlap between them respectively (white and deep blue).
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rB�,D� � �
�D�

2�B�
. (4)

This is the condition for variability to stay stable after stimulus

onset. We calculated �
�D�

2�B�
and rB�,D� from rest data, and found

that they are indeed distributed around the unity line (Fig. 5A,
red dots; the scatter around the unity line is due to finite sam-
pling). Moreover, the difference between rB,D and rB�,D� predicted
the strength of variability reduction quite well (Fig. 5B, r � 0.58,
p � 0.0004).

Shrinking of cortical activity space under task
Thus far we have adopted the classical view that there is the
evoked activity, and then there is the ongoing activity, which
continues after stimulus onset, and that the two sum (albeit non-
linearly as we have shown above) to give rise to the recorded
signal after stimulus onset. However, could it be that this distinc-
tion is artificial after all? In other words, the distinction between
ongoing and evoked activity in the poststimulus period makes
sense if the two summed linearly; this distinction becomes blurry
if linear superposition no longer holds. An alternative perspec-
tive, in line with the dynamic-systems approach to the brain (for
review, see Buonomano and Maass, 2009), is that there is only
one activity: the brain’s trajectory in a multidimensional space
before and after a stimulus. Under this perspective, we already
record the brain’s trajectory; there is no need to decompose it into
ongoing and evoked components (which, empirically, is an ill-
posed inverse problem without making assumptions, such as lin-
ear superposition).

To illustrate this idea, we visualized cortical activity before and
after stimulus onset in a three-dimensional space (see Materials
and Methods). We further estimated the volume of the space
taken up by prestimulus and poststimulus activity respectively,
and calculated an SI as the percentage of volume reduced from
prestimulus to poststimulus activity. We found that the volume
of the space outlined by prestimulus activity is larger than that
occupied by poststimulus activity in all 33 ROIs (mean of SI
across 33 ROIs, 13.6%; range, 3.1 � 32.5%). A paired t test on SI
across 33 ROIs showed a significant difference between prestimu-
lus and poststimulus activity (p � 1.7e-12). Several regions with
the most dramatic shrinking of cortical activity space are shown

in Figure 6A. Remarkably, for some ROIs,
the distribution of poststimulus activity
resides completely within that of the pre-
stimulus activity (e.g., RMC and medial
prefrontal cortex), paralleling an earlier
suggestion that spontaneous activity out-
lines the realm of possible cortical states,
with poststimulus activity visiting a subset
of them (Luczak et al., 2009). Impor-
tantly, the shift in the center of mass be-
tween prestimulus and poststimulus
activity distributions corresponds to the
classical trial-averaged mean response,
while the shrinking of volume corre-
sponds to variability reduction and can
occur with (e.g., LMC and dorsal anterior
cingulate cortex) or without (e.g., RMC) a
change in the mean. These results echo
earlier observations that variability reduc-
tion and trial-averaged response have
overlaps in their spatial patterns, but can

also occur independently of each other (Fig. 4B). Confirmatorily,
SI correlated significantly with the strength of variability reduc-
tion (Fig. 6B, r � �0.6, p � 0.0002).

Trial-to-trial variability contains behaviorally
relevant information
Last, we found that trial-to-trial variability carries information
about behavioral outcome. The across-trial variance was com-
pared between fast and slow trials (determined by a median split
on reaction times for each subject) at four time points around the
peak response. At 3.24, 5.4, 7.56, and 9.72 s following stimulus
onset, there were respectively 8, 5, 5, and 6 of 33 ROIs showing a
significant difference between the two groups of trials (p � 0.05,
uncorrected; two-sample F test on variance). According to bino-
mial statistics, the chance that five or more than five of 33 ROIs
are individually significant at a p � 0.05 level is equal to 0.023.
Thus, the above results are significant for every time point tested
at the population level (8, 5, and 6 of 33 ROIs corresponds to p �
0.00017, p � 0.023, and p � 0.005 respectively).

While the above conclusion was drawn at the population level,
for illustration purpose two representative ROIs are shown in
Figure 7. The right cerebellum showed more variability reduction
when reaction times were fast, whereas the left hippocampus
showed the opposite pattern (Fig. 7B). Neither ROI differentiated
between fast and slow trials in their trial-averaged time courses
(Fig. 7A). We have shown earlier that a larger decrease of trial-to-
trial variability reflects a stronger negative interaction between
ongoing and evoked activity (Fig. 5B) and more severe tightening
of the cortical activity space (Fig. 6B), suggesting that larger de-
crease of variability reflects more recruitment of a region in the
task. Hence, these results can be interpreted as the right cerebel-
lum being more involved in faster trials, consistent with its
known functional role in motor control and timing (Ivry and
Spencer, 2004). By contrast, the left hippocampus is recruited
more in slower trials because the recall of personal events (e.g.,
planning for what to do after the scan) could distract the subject
from the ongoing task and cause slower responses. This is consis-
tent with the role of the left hippocampus in episodic memory
(Squire et al., 2004).

Figure 5. Interaction between ongoing and evoked activity. A, rB,D is the correlation between B and D values across trials. �B

and �D are the SDs of B and D values across trials respectively. rB�,D�, �B�, and �D� are calculated using surrogate trials from rest
data. Each dot represents one ROI (red, rest data; blue, task data). B, Correlation between SD change t score (paired t test on SD
between peak frame at 5.4 s and the prestimulus frame) and the difference between rB,D and rB�,D� (both Fisher z transformed)
across ROIs. Red line indicates the best linear-regression fit.
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Hemodynamic response modeling
Nonlinearities have been observed in
task-evoked fMRI responses (Binder et
al., 1994; Friston et al., 1998; Birn et al.,
2001) and have been shown to have
a hemodynamic contribution (but see
Bandettini and Ungerleider, 2001;
Pfeuffer et al., 2003). Thus, one question
remains regarding whether the across-
trial variability reduction we observed is
contributed by nonlinearities in the he-
modynamic response or the underlying
neural activity. To address this question,
we adopted a standard balloon model of
neurovascular coupling (Buxton et al.,
1998), whose inherent nonlinearities have
been shown to successfully account for
these previously reported nonlinearities
in task-evoked fMRI responses (Friston et
al., 2000). The balloon model assumes
that the CBF response scales linearly with
neural activity, while the transfer from
CBF to fMRI BOLD response is highly
nonlinear. Specifically, we asked the fol-
lowing: if evoked neural activity linearly
added to ongoing neural activity, could
the nonlinearity in neurovascular cou-
pling produce the variability reduction
we observed?

We first modeled ongoing fMRI sig-
nals with fluctuation magnitude (assessed
by range and SD) and autocorrelation be-
havior (assessed by Hurst exponent; for
details, see He, 2011) similar to empiri-
cally observed values from resting-state
fMRI signals (Fig. 8A), and length equal to
our task study. Next, at time points de-
fined by the stimulus triggers from our
task study, we added to the model input a
fixed evoked CBF response (Fig. 8B). Ten
evenly spaced amplitude values of the
evoked CBF response were chosen to
cover the entire range of the empirically
observed fMRI response amplitudes (Fig.
3A), such that when simulated in isolation
(i.e., without the addition of ongoing ac-
tivity), the evoked fMRI response amplitudes ranged from 0.055
to 0.55% (Fig. 8C). For each input amplitude value, we recovered
the trial-averaged fMRI signal from the full model with inputs
including both ongoing and evoked activity (Fig. 8D), whose
amplitudes were very close to the intended values (Fig. 8E). Con-
trary to our empirical observation (Fig. 3B), model outputs
showed slightly increased trial-to-trial variability with a pro-
longed delay after stimulus onset at all 10 input amplitude values
(Fig. 8F). The change of variability from baseline was within 2%
in all cases. At the peak of the evoked response, there was no
correlation between the amplitude of the averaged response and
trial-to-trial variability (Fig. 8G, r � �0.2; p � 0.58), and the
change of variability from baseline ranged from �0.19% to
0.65% with a predominant increase. By contrast, a similar
analysis on the empirical data from 33 ROIs showed a highly
significant correlation between the amplitude of the averaged re-
sponse and trial-to-trial variability (Fig. 8H, r � �0.61; p � 0.0002),

and the change of across-trial variability from baseline ranged from
�14.6% to 3.3%, with 32 of 33 ROIs showing decreased variability.

The above results demonstrate that in the limit of no variability in
the evoked response (i.e., �� � 0 in Eq. 1) and no interaction be-
tween ongoing and evoked activity (i.e., rX,Y � 0), nonlinearities in a
standard balloon model of neurovascular coupling cannot repro-
duce variability reduction observed in our data. Anecdotally, we
found that introducing variability to the evoked CBF response fur-
ther increased trial-to-trial variability in the model output (i.e., sim-
ulated BOLD signal), while introducing a negative correlation
between ongoing and evoked CBF activity decreased trial-to-trial
variability in the model output. The full behavior of this model will
be characterized in a follow-up paper.

Discussion
In summary, we report the following main findings: (1) trial-to-
trial variability decreases following stimulus onset across wide-

Figure 6. Cortical activity space analysis. A, Visualization of the prestimulus (red) and poststimulus (blue) activity across trials
for selected ROIs. Data from all subjects were pooled together. Each dot represents one trial; ellipses show the 95% confidence
interval of the distribution projected onto two-dimensional planes (red, prestimulus; blue, poststimulus). The SI is indicated in each
graph. MC, Primary hand-motor cortex; TPJ, temporoparietal junction; MPF, medial prefrontal cortex; dACC, dorsal anterior cin-
gulate cortex. B, Correlation between SI and the SD change t score. Each dot represents one ROI; the red line indicates the best
linear-regression fit.
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spread brain areas, suggesting that ongoing and evoked brain
activity negatively interact with each other, such that higher pre-
stimulus baseline results in less activation or more deactivation;
(2) the space occupied by the set of potential cortical activity
trajectories shrinks following stimulus onset; and (3) across-trial
variability carries behaviorally relevant information. Impor-
tantly, variability reduction can occur without any significant
change in the trial-averaged response (Figs. 4B, 6A); hence, it
provides a novel approach to brain mapping. While we did not
directly show sign flipping of single-trial responses as depicted in
Figure 2ii,iii, the observation that poststimulus activity can reside
completely within the realm outlined by prestimulus activity sug-
gests that this is indeed the case in some ROIs (Fig. 6A).

Variability reduction following stimulus onset was previously
reported in neuronal firing (Werner and Mountcastle, 1963;
Churchland et al., 2010; Chang et al., 2012; White et al., 2012).
However, given the complex relationships among the fMRI sig-
nal, neuronal firing, and local field potentials (LFPs) and the
dissociation between the fMRI signal and neuronal firing under
various conditions (Logothetis, 2008; Maier et al., 2008; He and
Raichle, 2009), our finding of variability reduction in the fMRI
signal does not follow trivially from this previous work. Impor-
tantly, the results from hemodynamic response modeling suggest
that the present findings likely reflect underlying neural activity
instead of a pure hemodynamic phenomenon. Nonetheless, a full
understanding of the nature of neural activity underlying the
present observations warrants future investigations. One poten-
tial avenue is to apply the present methods to other recording
modalities, such as neuronal membrane potentials and mass neu-
ral activity reflected in electrical and magnetic fields (e.g., LFP,
EEG, and magnetoencephalography). Of note, trajectory-based
analyses applied to population activity recorded from the insect
olfactory system have also revealed significant initial-condition-
dependent stimulus modulations (Mazor and Laurent, 2005;
Broome et al., 2006). Taken together with the present findings,

these results suggest that the interaction
between the initial state and responses to
sensory inputs might be a general prop-
erty of the nervous system.

Why do we find interaction between
ongoing and evoked activity while earlier
studies have reported linear superposition
between them? Some of these previous
studies computed the correlation between
signal amplitudes at the prestimulus base-
line and the peak response (Arieli et al.,
1996; Azouz and Gray, 1999). Because the
fluctuation magnitude of ongoing activity
is often larger than evoked responses
(Dawson, 1951; Arieli et al., 1996; Fox and
Raichle, 2007), the baseline–peak correla-
tion would be swamped by the strong au-
tocorrelation within the ongoing activity
(Arieli et al., 1996; Azouz and Gray, 1999;
Bullmore et al., 2001; Sylvester et al., 2009;
He, 2011). In fact, as shown in Fig 4C of
Arieli et al. (1996), the autocorrelation of
ongoing activity is higher than the corre-
lation between baseline and poststimulus
activity, which is consistent with the pres-
ence of a negative interaction between on-
going and evoked activity. Another
previously adopted method was to use the

activity in the homologous brain region as a substitute for the
ongoing activity in the activated brain region [e.g., using RMC as
a substitute for ongoing activity in the LMC under a right-hand
motor task (Fox et al., 2006)]. However, as shown here, the ho-
mologous brain region RMC nevertheless shows significant vari-
ability reduction (Fig. 4B) and tightening of cortical activity space
(Fig. 6A; in fact, the SI of RMC is the largest across 33 ROIs),
indicating that it does not represent ongoing activity unaffected
by the task. Last, Becker et al. (2011) presented data violating the
linear-superposition model as well (Becker et al., 2011, Fig. 7),
and EEG alpha-power used therein as the index of ongoing activ-
ity only accounted for 10% of trial-to-trial fMRI variance on
average (see Becker et al., 2011, Fig. 9). By contrast, our results are
consistent with earlier reports showing that the correlation be-
tween baseline and peak fMRI signal amplitudes depended on
perceptual outcome (Hesselmann et al., 2008b; Sadaghiani et al.,
2010), even though these previous studies did not directly dem-
onstrate an interaction between ongoing and evoked activity.

The present findings have implications for studies decoding
the information content of the fMRI signals using either univar-
iate receiver– operator characteristic (ROC) curve (Sapir et al.,
2005; Sylvester et al., 2009) or multivariate pattern analysis
(Haxby et al., 2001; Haynes and Rees, 2006; Kriegeskorte et al.,
2006; Pereira et al., 2009). These methods take advantage of both
the across-trial mean response and the trial-to-trial variability.
The variability reduction following stimulus onset described here
would increase the decoder’s ability to tell different conditions
apart. It is tempting to speculate that the same mechanism might
be used by the brain to more efficiently encode information and
distinguish among different stimulus– behavior contingencies.
Nonetheless, if the mean response is similar between conditions
while the trial-to-trial variability differs, this information can be
picked up by the present method but not by these decoding
approaches, which rely crucially on a difference in the mean
response.

Figure 7. A, B, Trial-averaged fMRI signal (A) and across-trial SD (B) time courses for fast (solid lines) and slow (dashed lines)
trials in the right cerebellum (left column) and the left hippocampus (right column). Results were averaged across subjects; error
bars indicate SEM. p values are from a paired t test across subjects on across-trial SD between fast and slow trials.
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Another promising recently developed method is to correlate
the fMRI signal amplitude with behavioral output or model pa-
rameters on a trial-to-trial basis (Badre et al., 2012). This method
also relies on a tacit assumption that there is a stereotypical
evoked response under a particular value of the behavioral or
model parameter, without taking into account that the evoked
response could be different simply due to different baseline val-
ues. Incorporating the interaction phenomenon described here
into these models (e.g., by adding the prestimulus baseline value
as a separate predictor) could potentially increase the sensitivity
of these methods.

It would be interesting to extend the trial-to-trial variability
measure into multidimensional space. A recent study showed
that the fMRI activation pattern was more reproducible under
conscious perception compared with unconscious processing
(Schurger et al., 2010). By using only the angle of the population
vector, this study investigated the relative relationships of nor-
malized fMRI amplitudes across space. In future studies, it would
be informative to include the raw amplitude information as well,
which might show a decrease of variability in both the norm and
the angle of the population vector.

An important future research topic concerns the functional role(s)
of variability reduction. Two possibilities, not mutually exclusive, pres-
ent themselves.One is that thereductionof internalvariability facilitates
sensory processing (Abbott et al., 2011). Another is that variability
provides an additional dimension to information coding in the
brain. In parallel to our finding showing that behaviorally relevant
information is sometimes encoded in the variability but not the
mean of cortical responses (Fig. 7), trial-to-trial variability in mem-
brane potentials of visual cortical cells decreases in response to high-
contrast stimuli, a key mechanism that allows the system to
disambiguate stimulus strength from attribute (Finn et al., 2007).
Further, variability increase might carry different information from
variability reduction (Briggman et al., 2005; Churchland et al., 2011).
Importantly, across-trial variability might provide a useful bio-
marker for diagnosis of neurological/psychiatric disorders (Dinstein
et al., 2012). Nonetheless, if variability were to become useful in
predicting behavioral outcome on a trial-to-trial basis, single-trial
correlate of the across-trial variability measure used here and
elsewhere would need to be uncovered by future investigation.

Revealing the mechanism(s) of variability reduction will also
be important. Of note, variability reduction to external inputs has

Figure 8. Hemodynamic response modeling. A, An example of simulated ongoing fMRI signal (left) and its detrended fluctuation analysis (DFA) result (middle). Right, the fluctuation magnitude,
as assessed by range and SD, as well as the DFA exponent � (which estimates directly the Hurst exponent H ) are compared between simulated data and real data from resting-state study. B, Input
to the balloon model for the evoked component, following Friston et al. (2000). rCBF, regional CBF. C, Simulated evoked BOLD response from the balloon model, with only the evoked CBF response
as input. Ten different response amplitudes were simulated. D, Trial-averaged BOLD signals from the full balloon model, with the input including both ongoing CBF activity and evoked CBF responses.
E, Correlation between the peak amplitudes of evoked BOLD response simulated in isolation (abscissa value, from C) and the trial-averaged response from the full model (ordinate value, from D). Red
line indicates the unity line. F, Trial-to-trial variability (SD) time courses. As for real data, SD time courses were normalized to its value at stimulus onset. Traces in different colors show results from
10 different input amplitude values. G, Relationship between the peak amplitude of the trial-averaged responses (abscissa) and trial-to-trial variability at the same time point (ordinate) across 10
input amplitude values (r � �0.2; p � 0.58). H, Correlation between the peak amplitude of the trial-averaged responses (abscissa) and trial-to-trial variability (ordinate) at the same time point
(5.4 s following stimulus onset) across 33 ROIs.
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been demonstrated in a recurrent chaotic network model
(Abbott et al., 2011) and an attractor network model (Deco and
Hugues, 2012); further, a mean-field model for EEG shows linear
superposition and nonlinear phase resetting under different
schemes of the same model (David et al., 2005). In addition,
inhibitory conductance (Monier et al., 2003), neuromodulation
(Goard and Dan, 2009), attention (Mitchell et al., 2007), and
feedforward mechanisms (Sadagopan and Ferster, 2012) may
play a role in modulating neuronal/neural-network variability
as well.

Finally, the current finding that the cortical activity space
shrinks following stimulus onset recalls earlier observations that
the total temporal variance of signal fluctuations is reduced un-
der task compared with rest in fMRI signals (He, 2011), neural
field potentials (He et al., 2010), and neuronal membrane poten-
tials (Poulet and Petersen, 2008). Importantly, trial-to-trial vari-
ability investigated here is not to be confused with the temporal
variance of a signal, which describes the total amount of fluctua-
tions in a behavioral state. The decrease of temporal variance
during task blocks does not predict the decrease of trial-to-trial
variability following stimulus onset, as the former can be homo-
geneous across the entire block and not time-locked to the stim-
ulus or behavior. However, the presence of both effects in the
same behavioral context (He, 2011, and the current results) point
to a potential connection between them, and strengthens the
impression that temporal variance decrease is due to a specific
task effect. Importantly, both sets of results are consistent with an
alternative view to the traditional dichotomous framework of
ongoing and evoked activity. That is, to think of the brain as a
dynamic system selecting its trajectory based on the context and
tightening that trajectory when performing a specific task. Last
but not least, in line with prior theoretical work (Buonomano
and Maass, 2009), the present results suggest that incoming sen-
sory stimuli modulate the brain’s activity in a manner that de-
pends on its initial state.
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