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SUMMARY

Scale-free dynamics, with a power spectrum
following P f f �b, are an intrinsic feature of many
complex processes in nature. In neural systems,
scale-free activity is often neglected in electrophysio-
logical research. Here, we investigate scale-free
dynamics in human brain and show that it contains
extensive nested frequencies, with the phase of lower
frequencies modulating the amplitude of higher
frequencies in an upward progression across the
frequency spectrum. The functional significance of
scale-free brain activity is indicated by task perfor-
mance modulation and regional variation, with
b being larger in default network and visual cortex
and smaller in hippocampus and cerebellum. The
precise patterns of nested frequencies in the brain
differ from other scale-free dynamics in nature, such
as earth seismic waves and stock market fluctua-
tions, suggesting system-specific generative mecha-
nisms. Our findings reveal robust temporal structures
and behavioral significance of scale-free brain
activity and should motivate future study on its phys-
iological mechanisms and cognitive implications.

INTRODUCTION

Since the invention of human electroencephalography (EEG) and

Berger’s first demonstration of the human occipital alpha rhythm

(Berger, 1929), the search for brain rhythms has been a dominant

theme not only in human EEG and subsequent animal local field

potential (LFP) research, but also in routine clinical EEG practice.

Indeed, the classical frequency bands in EEG—delta (1–3 Hz),

theta (4–8 Hz), alpha (9–12 Hz), beta (12–30 Hz), and gamma

(>30 Hz)—were demarcated based on the various oscillatory

rhythms that appear conspicuously in EEG traces in specific

behavioral states, such as delta oscillations during sleep, theta

oscillations under certain types of cognition, alpha oscillations

during eye-closure, beta and gamma oscillations in activated

states. (Throughout this article, we use ‘‘delta,’’ ‘‘theta,’’ ‘‘alpha,’’
‘‘beta,’’ and ‘‘gamma’’ to denote their respective frequency

ranges, applied to both periodic oscillations and arrhythmic

brain activity. Although the word ‘‘oscillation’’ has often been

used to refer to band-pass-filtered arrhythmic brain activity, we

herein use it exclusively to refer to periodic, rhythmic brain activ-

ities before artificial filtering.) However, as pointed out by several

pioneers in the field (Bullock et al., 1995, 2003; Freeman and

Zhai, 2009; Logothetis, 2002), arrhythmic brain activity also

constitutes a significant, if not the major, part of EEG and LFP

records, but much less is known about it. Recently, it was found

that broadband field potentials recorded from the human brain

are modulated by task performance and correlate with neuronal

spiking activity (Manning et al., 2009; Miller et al., 2009b). More-

over, synchronization between different neuronal groups not

only occurs via synchronized oscillations, but may also manifest

within arrhythmic brain activity with no apparent periodicity

(Eckhorn, 1994; Thivierge and Cisek, 2008).

Viewed in the frequency domain, the temporal power spec-

trum of arrhythmic brain activity roughly follows a straight line

when plotted in coordinates of log power versus log frequency:

log(P) f �b log(f) or P f f �b (0 < b < 4). This is called a

‘‘power-law’’ distribution, ‘‘scale-free,’’ or ‘‘fractal’’ dynamics,

and is commonly referred to as ‘‘1/f noise’’ (note, however, that

the exponent b for brain signals is not always in the vicinity of

1, see below). Periodic brain oscillations appear as local peaks

that rise above the power-law distribution in the power spec-

trum. This arrhythmic, scale-free brain activity is invisible in

many EEG or LFP studies, since power at each frequency is

routinely normalized by its value during a pretask baseline, effec-

tively removing the presence of the 1/fb spectrum, or else the

data is prewhitened to remove the 1/f b spectrum and emphasize

oscillations (e.g., Buzsaki, 2006; Mitra and Pesaran, 1999). This

systematic disregard of ‘‘1/f noise’’ is partly due to its ubiquitous

presence in nature, including earthquakes, solar flares,

economics, evolution, ecology, epidemics, electronics, speech,

and music (Bak, 1996; Gisiger, 2001; Hsü and Hsü, 1991; Voss

and Clarke, 1975), which often leads to doubts of any signifi-

cance that ‘‘1/f noise’’ might play in operations specific to the

brain. In addition, the possibility that ‘‘1/f noise’’ might originate

from instrument noise (Zarahn et al., 1997) has also deterred

investigations on scale-free activity in relation to brain function.

However, not only do LFP, EEG, and functional magnetic reso-

nance imaging (fMRI) signals recorded from the brain exhibit
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scale-free dynamics (Bullmore et al., 2001; Buzsaki, 2006;

Freeman and Zhai, 2009; Linkenkaer-Hansen et al., 2001; Mil-

stein et al., 2009; Monto et al., 2008), but the speed of action

potentials (Ward, 2002), the dynamics of neurotransmitter

release (Lowen et al., 1997), and human cognition and behaviors

(Gilden, 2001; Maylor et al., 2001; Ward, 2002) too manifest

scale-free dynamics, which are inexplicable by instrument noise.

Moreover, recent work suggested that fluctuations in the signal

comprising the low-frequency end of the 1/f b spectrum, the

slow cortical potential (SCP), not only modulate trial-to-trial

behavioral performance and the amplitude of higher-frequency

activities (Monto et al., 2008; Vanhatalo et al., 2004; for reviews

see Birbaumer et al., 1990; He and Raichle, 2009), but also corre-

late with the fMRI signal (He and Raichle, 2009; He et al., 2008;

Khader et al., 2008; Nagai et al., 2004).

Therefore, an understanding of arrhythmic, 1/f b brain activity

seems critical if a full understanding of brain operations is to

be achieved. Unfortunately, existing studies on broadband field

potentials focusing on arrhythmic, 1/f b activity remain scarce

(Buiatti et al., 2007; Freeman and Zhai, 2009; Manning et al.,

2009; Miller et al., 2009b; Onton and Makeig, 2009) and usually

characterize only the gross properties of the power spectrum

such as the power-law exponent or total variance. Many simula-

tions of scale-free dynamics have been constructed by physi-

cists (e.g., Bak, 1996; de Arcangelis et al., 2006; De Los Rios

and Zhang, 1999; Lin and Chen, 2005; Mandelbrot, 1999;

Ward and Greenwood, 2007), but it remains to be seen whether

these general models also describe the neurophysiological

processes giving rise to 1/f b signals in the brain. Notably,

scale-free properties have recently been described in the

amplitude and synchronization of oscillatory brain activity (Link-

enkaer-Hansen et al., 2001; Stam and de Bruin, 2004), and in the

temporal and spatial distributions of negative LFP peaks (Plenz

and Thiagarajan, 2007). Yet, these analyses do not directly

address the form of 1/fb activity so prevalent in raw fluctuations

of brain field potentials, and their relations to the latter await

future investigation.

We investigated the fine temporal structures of arrhythmic,

scale-free brain activity by using nested-frequency analysis.

Nested frequencies refer to a systematic relationship between

the phase of a lower frequency and the amplitude of a higher

frequency and has been described between the phase of theta

and amplitude of gamma oscillations (Bragin et al., 1995; Canolty

et al., 2006; Lakatos et al., 2005; Tort et al., 2008) and between

the phase of delta and subdelta activity and amplitude of higher

frequencies (Lakatos et al., 2008; Monto et al., 2008; Vanhatalo

et al., 2004). Here, we show that the extent of nested frequencies

is much broader than previously conceived, extending beyond

the confinement of brain oscillations to being present within

arrhythmic brain activity. These results suggest that, contrary

to common assumptions, arrhythmic brain activity contains a

rich temporal organization. We then provide data showing that

the power-law exponent of scale-free brain activity varies across

brain regions and is modulated by task performance. Lastly, we

compared scale-free brain activity with other scale-free

dynamics in nature including earth seismic waves and stock

market fluctuations, as well as simulated time series. Each of

these scale-free dynamics follows a power-law distribution,
354 Neuron 66, 353–369, May 13, 2010 ª2010 Elsevier Inc.
but the fine temporal patterns present within them differ across

systems, which are likely a manifestation of different underlying

generative mechanisms. Together, these results indicate that

arrhythmic, scale-free brain activity has an unexplored physio-

logical architecture and intrinsic function.

RESULTS

Power Spectra of Electrical Field Potentials of the Brain
We collected spontaneous electrocorticography (ECoG, i.e.,

invasive EEG) data from five patients (Patients #1–#5; see Table

S1 available online) undergoing surgical treatment for drug-

resistant epilepsy, in both quiet wakefulness and slow-wave

sleep (SWS, sleep stages 3/4). The length of data collected

in each arousal state ranged from 12 to 83 min. In Patient #4,

30 min of rapid-eye-movement (REM) sleep data were also

collected. Electrode locations documented by plain X-ray

pictures are shown in Figure 1F. For the details of clinical and

data collection information see Table S1.

The power spectra of ECoG signals, plotted in log-log coordi-

nates (Figures 1A–1E, top graphs), roughly followed a straight

line, with local peaks corresponding to well-known brain oscilla-

tions rising above this line. These oscillations included the slow

oscillation (�0.8 Hz) and sleep spindles (�12 Hz) during SWS,

the theta (�7–8 Hz), alpha (�10 Hz), and beta (�20 Hz) oscilla-

tions in the awake state. Multiple brain oscillations notwith-

standing, the vast majority of power in the ECoG signals is

accounted for by the power-law distribution representing

arrhythmic brain activity.

To estimate the power-law exponent, we first adopted the

procedure developed by Yamamoto and Hughson (1991,

1993), coarse-graining spectral analysis (CGSA), to separate

the harmonic/oscillatory from the scale-free/fractal components

of the ECoG power spectrum. This method takes advantage of

the self-affinity property of a scale-free time series, i.e., the

statistical distribution of the data remains the same when

sampled at different scales (Mandelbrot and Van Ness, 1968),

and the fact that this is not true for harmonic time series (for

details see Supplemental Experimental Procedures). The fractal

and harmonic components of the ECoG power spectrum ob-

tained by the CGSA method for each patient, each arousal state

are presented in Figures 1A–1E (middle graphs). In SWS,

harmonic components included peaks at 0.5–1 Hz and 12–

14 Hz, representing the slow oscillation (also called ‘‘up-and-

down states,’’ UDS) and sleep spindles, respectively. In the

waking state, the harmonic components included various peaks

in the delta, theta, alpha, beta, and gamma frequency ranges. In

the REM sleep data from Patient #4, the harmonic component

included peaks in the theta frequency range and around 30 Hz.

Interestingly, after reducing oscillatory activity, the remaining

fractal components of the power spectrum still had a ‘‘shoulder’’

in the frequency range of 0.1–1 Hz. Whether this reflected a true

property of arrhythmic brain activity, or alternatively, the remain-

ing presence of the UDS that was unsuccessfully removed by the

CGSA method awaits future investigation. Recent studies

suggest that the UDS can also occur during wakefulness when

quietly resting or when sleep pressure increases (Petersen

et al., 2003; Vyazovskiy et al., 2009). For discussions on why
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Figure 1. Power Spectra and Cross-frequency Coupling in ECoG Data

(A–E) Power spectra and nested frequencies in spontaneous ECoG signals recorded from different arousal states in Patients #1–#5. Top: Raw power spectra for

all electrodes plotted in log-log plots. Different colors plot different electrodes, the thick black trace plots the average across all electrodes. Middle: The fractal

components of the power spectra, extracted by the CGSA method. The thick black trace plots the average across all electrodes. The low-frequency end (<0.1 Hz)

and higher-frequency range (1–100 Hz) of the average power spectrum were each fit with a power-law function P(f) f 1/f b. The obtained exponents b are

indicated in the graphs. The insets show the harmonic components extracted by the CGSA method. Results from all or a subset of electrodes are plotted on

a linear scale; electrodes with pronounced harmonic activity were selected for presentation. Bottom: The percentage of electrodes with significant phase-ampli-

tude cross-frequency coupling. Phase was extracted from 1 Hz-width bins with center frequencies from 1 to 20 Hz in 1 Hz steps. Amplitude was extracted from

5 Hz-width bins with center frequencies from 5 to 200 Hz in 5 Hz steps. The percentage of electrodes with significant MI Z score (p < 0.05 after Bonferroni correc-

tion) is plotted as color for each frequency pair.

(F) Electrode locations documented by plain X-ray pictures for each patient. R: electrodes over right hemisphere; L: electrodes over left hemisphere.
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UDS is different from SCP see Supplementary Note 3 in He et al.

(2008). Moreover, in the current context, the surface positivity of

EEG/ECoG slow waves (�0.8 Hz) corresponds to intracellular
up-state and thus increased cortical excitability (Cash et al.,

2009 and see Nested-Frequency Patterns across Brain Surface);

whereas the surface negativity of EEG/ECoG SCP corresponds
Neuron 66, 353–369, May 13, 2010 ª2010 Elsevier Inc. 355
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to increased depolarization at apical dendrites and thus

increased cortical excitability (He and Raichle, 2009). Accord-

ingly, we fit the low-frequency end (<0.1 Hz) and the higher-

frequency range (1-100 Hz) respectively with a power-law

function: P f f �b, avoiding the ‘‘shoulder.’’ The values of the

resultant b exponents are listed in Figures 1A–1E. Averaged

across all patients, the low (<0.1 Hz) and high (1–100 Hz)

frequency ranges had exponent of 2.2 and 2.44 respectively in

the awake state, and 1.6 and 2.87, respectively, in SWS. The

effect of arousal state on power-law exponent was non-signifi-

cant (p > 0.5). However, the interaction of arousal state 3

frequency range was highly significant (p < 0.004); whether this

reflected unreduced UDS in the data or a true change in

arrhythmic brain activity across waking and SWS requires future

investigation. Notably, the exponents we obtained correspond

very well with previous reports on the power-law exponent of

LFP or ECoG activity (Freeman and Zhai, 2009; Miller et al.,

2009a; Milstein et al., 2009).

The Widespread Presence of Nested Frequencies
To investigate temporal structures within spontaneous ECoG

signals, we examined nested-frequency patterns in each

electrode. For a pair of frequencies, instantaneous phase and

amplitude were extracted for the lower and higher frequency,

respectively. The lower-frequency phase at all samples was

sorted into 20 bins, and the concurrent higher-frequency ampli-

tude was averaged within each bin. The resultant curve shows

the dependency of the higher-frequency amplitude on lower-

frequency phase, and its deviation from a uniform distribution

was evaluated using an inverted entropy measure to yield a

modulation index (MI) (Tort et al., 2008). The MI was compared

with shuffled data to obtain a MI Z-score indexing the strength

of cross-frequency phase-amplitude coupling. For details see

Supplemental Experimental Procedures.

Cross-frequency phase-amplitude coupling was investigated

in a 2D frequency space: phase was extracted from each 1 Hz

width bin centered at 1, 2 . 20 Hz, and amplitude was extracted

from each 5 Hz width bin centered at 5, 10 . 200 Hz. For each

frequency pair, the percentage of electrodes with a significant MI

Z-score (p < 0.05 after Bonferroni correction) is plotted as color

in Figures 1A–1E (bottom graphs). During wakefulness, exten-

sive nested frequencies are present in every patient in the

majority of electrodes; the extent of nested frequencies

decreases during SWS but remains highly robust across wide

frequency ranges in Patients #3, #4, and #5. REM sleep data

from Patient #4 also shows extensive nested frequencies across

the entire frequency spectrum. Such widespread presence of

nested frequencies extends beyond the frequency boundaries

of rhythmic brain oscillations (see insets in the middle graphs

of Figures 1A–1E) and is difficult to reconcile with previous

notions conceiving nested frequencies only within the framework

of oscillatory brain activities. Instead, it appears that to explain its

presence, arrhythmic brain activity must be invoked.

Power-Law Distribution Is Not an Artifact of Averaging
Brain oscillations and ‘‘1/f noise’’ have so far remained two

largely separate fields. An important, unresolved question con-

cerns whether they index distinct physiological processes with
356 Neuron 66, 353–369, May 13, 2010 ª2010 Elsevier Inc.
different underlying mechanisms (e.g., Bullock et al., 2003;

Freeman and Zhai, 2009), or alternatively, if ‘‘1/f noise’’ is the

result of averaging across time of many different, transient and

recurrent oscillations at different frequencies and with different

amplitudes (e.g., Buzsaki, 2006).

To investigate this issue, we randomly picked three electrodes

(from Patient #3), two with and one without rhythmic oscillations.

As shown by the power spectra averaged across the entire

awake record (Figure 2A, left), electrode #33 contains oscilla-

tions at�1.5 Hz and�20 Hz, electrode #43 contains oscillations

at 7–8 Hz and �20 Hz, and electrode #64 contains no periodic

oscillations but only arrhythmic, scale-free activity. The above

impression from the power spectra is corroborated by visual

inspection of the raw ECoG records. Two randomly selected

20 s segments of raw data, which were separated in time

by >1 hr are shown in Figure 2C. The power spectra of these

two short data segments (Figure 2A, middle and right) recapitu-

late the power spectra averaged over the entire 83 min record.

The observation that the overall shape of the power spec-

trum—its power-law distribution and the location of oscillatory

peaks—appears to be stable over time was obtained in many

electrodes.

These results suggest that the power-law distribution of the

ECoG power spectrum does not seem to be an artifact of aver-

aging over time of many independent, periodic oscillations, but

rather appears to be the direct result of the presence of

arrhythmic, scale-free brain activity. One remaining possibility

is that there are hidden rhythmic activities at finer spatial scales

than the resolution of ECoG electrodes. However, arrhythmic,

scale-free activity is present at every spatial scale in the brain.

The power spectrum of spontaneous LFP activity also follows

a power-law distribution (Leopold et al., 2003; Milstein et al.,

2009) with a power-law exponent close to that of ECoG activity.

Further, cortical pyramidal neurons’ spikes are usually non-

rhythmic (Ermentrout et al., 2008; Faisal et al., 2008; Freeman

and Zhai, 2009; Koch, 1997; Thivierge and Cisek, 2008; but

see Maimon and Assad, 2009) and ‘‘1/f noise’’ has been

observed in neuronal spike trains (Gisiger, 2001; Grüneis et al.,

1989; Takahashi et al., 2004; Yamamoto, 1991) and neurotrans-

mitter release (Lowen et al., 1997).

Stability of Nested Frequencies within Arrhythmic
Brain Activity
Next, we investigated whether electrodes with only scale-free

brain activity but no rhythmic oscillations also contained nested

frequencies. Nested frequencies in the above three electrodes

were computed in the same 2D frequency space as shown in

Figures 1A–1E (bottom graphs). Significant cross-frequency

coupling across wide frequency ranges were found in every elec-

trode (Figure 2B), including electrode #64, which contained no

discernible periodic oscillations.

To examine the stability of nested-frequency patterns within

arrhythmic brain activity, we plotted the higher-frequency ampli-

tude averaged at different phases of the lower frequency for

selected frequency pairs in electrode #64. Amplitude of 5 Hz

width bands centered at 25, 50, 100, 150, 200 Hz was each aver-

aged at different phases of lower-frequency bands (1 Hz width)

centered at 1, 6, 11, 16 Hz and plotted in Figure 2D. This analysis
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Figure 2. Stability of the 1/f b Power Spectrum and Nested-Frequency Patterns

(A) Power spectra from three example electrodes in Patient #3. The left, middle, and right panels are from the entire awake record (83 min) and two randomly

selected 20 s segments, respectively. Note the difference in scales between left versus middle and right graphs.

(B) Phase-amplitude cross-frequency coupling for each of the three electrodes computed from the entire awake record. MI Z score is plotted as color for each

frequency pair. Only significant values (p < 0.05 after Bonferroni correction) are shown.

(C) The raw data records for the two 20 s segments. For each segment, 0–10 s is shown on the top and 10–20 s shown on the bottom.

(D) Nested-frequency patterns for selected frequency pairs in electrode #64. Amplitude of the higher frequencies (5 Hz width bands centered at 25, 50, 100, 150,

200 Hz) was averaged at different phases of the lower frequencies (1 Hz width bands centered at 1, 6, 11, 16 Hz). Phase ± p corresponds to the trough (surface

negativity), and phase 0 to the peak (surface positivity) of the lower-frequency fluctuation. Nested-frequency patterns from the two 20 s segments (middle and

right) are very similar to that from the entire awake record (left).
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was repeated for the entire awake record (Figure 2D, left) and

the two 20 s segments shown in Figure 2C (Figure 2D, middle

and right). The nested-frequency patterns from the two short

data segments are each similar to the pattern from the entire

record, suggesting that the nested frequencies present within

arrhythmic brain activity appear to be stable over time. Similar

results from a few other representative electrodes in each patient

are shown in Figure S1. Importantly, the pattern of nested

frequencies varied across electrodes, even though all of them

contained mainly arrhythmic brain activity (Figure S1).

Nested-Frequency Patterns across Brain Surface
To characterize nested-frequency patterns across electrodes,

for the same frequency pairs as in Figure 2D, we obtained the
MI Z score, which indexes the strength of cross-frequency

phase-amplitude coupling, for each of the 259 electrodes from

all five patients. The percentage of electrodes with significant

cross-frequency phase-amplitude coupling for each frequency

pair is listed in Table 1 (the bottom values in each cell). Averaged

across the 20 frequency pairs, 85% and 72% electrodes had

a significant MI Z-score in wakefulness and SWS, respectively.

For each electrode and frequency pair, we also determined the

preferred phase of the lower frequency, which denotes the

phase of the lower frequency fluctuation at which the higher

frequency has the largest amplitude. Plotting the MI Z score

against preferred phase on an electrode-by-electrode basis for

each patient and frequency pair, we found that the preferred

phase tends to cluster around 0 and ± p, that is, the peak and
Neuron 66, 353–369, May 13, 2010 ª2010 Elsevier Inc. 357



Table 1. Percentage of All Electrodes (from Patients #1–#5) with Significant Cross-frequency Coupling that Preferred Lower-

Frequency Phase around Phase 0 versus Lower-Frequency Phase around Phase ±p

Electrodes with preferred phase falling in the interval (�0.3 p, 0.3 p) are counted as preferring phase 0; those with preferred phase falling in the interval

(0.7p, p) or (�p, �0.7 p) are counted as preferring phase ±p. Only electrodes with a significant MI Z score were counted.
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trough of the lower-frequency fluctuation respectively (Fig-

ures 3A and S2). For each frequency pair, the percentage of

electrodes (across all five patients) with preferred lower-

frequency phase around 0 or ± p and significant cross-frequency

coupling are listed in Table 1.

The above bimodal distribution of preferred phase raises

the question of whether the electrodes with preferred phase
358 Neuron 66, 353–369, May 13, 2010 ª2010 Elsevier Inc.
around 0 and those with preferred phase around ± p situated

in different cortical regions. Thus, for each frequency pair, we

plotted the preferred phase of the lower frequency as color

on a 2D representation of the electrode grid (Patient #3 in

Figure 3B; Patients #1, #4, and #5 in Figure S3). Indeed, elec-

trodes preferring phase 0 and those preferring phase ± p formed

largely separate clusters, which to a rough degree followed
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Figure 3. Nested-Frequency Patterns across Electrodes
(A) Nested-frequency patterns from two example patients, #3 and #4. Phase was extracted from 1 Hz width bands centered at 1, 6, 11, and 16 Hz. Amplitude was

extracted from 5 Hz width bands centered at 25, 50, 100, 150, and 200 Hz. For each frequency pair, the subplot shows a scatter-plot of all electrodes, each

represented by one dot. The ordinate value plots the cross-frequency coupling strength as indexed by MI Z score. The red horizontal line indicates significance

level (p < 0.05 after Bonferroni correction). The abscissa value plots the preferred phase of the lower frequency, i.e., the phase of the lower-frequency fluctuation

at which the amplitude of the higher frequency is largest.

(B) For Patient #3, the preferred phase for each frequency pair in (A) and each electrode are plotted as color on a 2D representation of the 8 3 8 electrode grid.

The orientation and location of this grid on the cortical surface is shown in the top diagram. The six white cells in the grid are bad electrodes that have been

eliminated from all analyses. The approximate locations of the central sulcus (CS) and Sylvian fissure (SF) are denoted on the bottom left grid. Squares in the

right panel mark frequency pairs whose preferred-phase maps remained stable across waking and SWS (indexed by a significant spatial circular correlation;

black: p < 0.002; red: p < 0.05, after Bonferroni correction for multiple comparisons).
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cortical anatomy such as the location of Sylvian fissure and the

central sulcus (marked in Figure 3B). Moreover, these spatial

patterns were relatively stable across arousal states (significant

spatial correlations across wakefulness and SWS are marked

by squares in Figures 3B and S3).

It should be noted that the results of this analysis were contrib-

uted by both arrhythmic brain activity and periodic brain oscilla-

tions, because, unlike in Figure 2, spontaneous ECoG signals

from all electrodes were used. When periodic brain oscillations

and arrhythmic brain activity are already mixed in collected

data, as is the case for many electrodes in our recordings, there

is no a posteriori mathematical means to separate them while

preserving their respective biologically-meaningful phase. The

influence of brain oscillations on the results in Figures 3 and S2

can be most clearly seen in 1 Hz phase modulation of higher

frequency amplitudes (the leftmost column in each subpanel;

also see Table 1). During wakefulness, the preferred 1 Hz phase

is a bimodal distribution, which clustered around 0 and ± p;

however, during SWS it becomes a unimodal distribution with

most electrodes having their preferred phase around phase 0.

This is in full accordance with known neurophysiology: During

SWS, the slow oscillation (i.e., UDS) at around 1 Hz becomes

very prominent, which modulates higher frequencies strongly.
The surface positive (phase �0) ECoG activity at �1 Hz corre-

sponds to the intracellular ‘‘up-state,’’ during which higher-

frequency activities are dramatically increased (Vyazovskiy

et al., 2009).

Task Modulation of Scale-free Brain Activity
We tested whether scale-free brain activity has any functional

significance by recording ECoG signals during both quiet wake-

fulness and task performance in Patients #3 and #5 and three

additional subjects (#6–#8; see Table S1). The task included

a cued button press condition and a self-paced button press

condition. In the cued condition, a visual cue prompted the

subject to press a button as soon as they detected the cue,

the inter-trial interval varied randomly between 2 and 20 s

(mean 6.1 s). In the self-paced condition, the subject was

instructed to press the button at their own pace, separating

adjacent button presses by a few seconds but avoiding regular

rhythms (which could entrain arrhythmic brain activity into

oscillations, see, e.g., Elbert et al., 1991; Lakatos et al., 2008).

The button press was performed by either the left or right index

finger, each corresponding to either the contralateral or ipsilat-

eral hand, depending on which brain hemisphere the electrodes

covered.
Neuron 66, 353–369, May 13, 2010 ª2010 Elsevier Inc. 359



Figure 4. Task Modulation of Scale-free Brain Activity

(A–C) Power-law exponent changes during task performance in electrodes over task-relevant brain areas. Cued: visual-cued button press condition. Selfpaced:

self-paced button press condition. LH/RH: the button press was performed by the left or right index finger. Six example electrodes from three patients are shown.

Five additional electrodes with significant alteration of the power-law exponent during task performance are shown in Figure S4. Statistical significance of the

difference of power-law exponent between rest and task conditions was assessed by t tests, with p values shown in the graphs. In Patient #5, SWS power spec-

trum (orange) is presented for comparison, but not used for statistical analysis.

(D) Emergence of an oscillation from scale-free brain activity during task performance. Results are from electrode #64 in Patient #3, same as electrode #64 in

Figure 2. Left: Power spectra from the spontaneous awake state (black), SWS (orange), and four trial types of the task. An oscillatory peak at �8 Hz emerges

during all four task conditions (blue arrow). Top right: Randomly selected 20 s raw data record during task. The presence of an 8 Hz oscillation is readily seen

(arrows). Bottom right: Nested-frequency patterns for selected frequency pairs during task performance (averaged across all task blocks), which are very similar

to those during the spontaneous awake state (shown in Figure 2D). The locations of these electrodes are indicated by arrows in the plain X-ray pictures (A) and (B),

reconstructed image from anatomical MR and CT scans (C) and the clinical diagram (D).
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We searched blindly for electrodes whose power spectrum

was significantly altered by task performance. Significant devia-

tion of power-law exponent during task from that during rest was

found in 11 electrodes, including four over the hand representa-

tion of primary motor cortex, one over lower motor cortex

(tongue/face representation), three over premotor area, one

over Broca’s area, one over lateral occipital cortex, and one

over lateral temporal lobe (Figures 4A–4C and S4). All five elec-

trodes over primary motor cortex were confirmed by cortical

stimulation as part of patients’ routine clinical care. Compared

to rest, the power-law exponent b of all these electrodes

decreased during all four trial types (i.e., the slope became ‘‘shal-

lower’’), suggesting that scale-free brain activity is modulated by

task performance. Interestingly, there was no systematic differ-

ence between the four trial types. Consistent with a previous

report (Miller et al., 2009a), we did not find any significant

change of power-law exponent in the higher-frequency range

(10–100 Hz) during task performance.

In electrode #64 from Patient #3 that contained only scale-free

brain activity during the spontaneous waking state (see Figure 2),
360 Neuron 66, 353–369, May 13, 2010 ª2010 Elsevier Inc.
we found the emergence of an oscillation at �8 Hz during task

performance in all four trial types (Figure 4D). This oscillatory

activity can be seen in both the power spectrum and raw data

records. Nonetheless, the nested-frequency patterns did not

change (compare Figure 4D bottom right graph to Figure 2D,

and see Figure S5). Since our task contained no rhythmic struc-

ture, the emergence of this 8-Hz oscillation was not a result of

entrainment by external stimuli but reflected intrinsic properties

of the underlying neuronal network.

Variation of Power-Law Exponent across Brain Regions
Assessed by fMRI
Since previous studies have demonstrated that the power spec-

trum of spontaneous fMRI signals also follows a power-law

distribution (Bullmore et al., 2001; Fox et al., 2007), we investi-

gated the scale-free dynamics in the fMRI signal and its

power-law exponent across brain regions, utilizing the whole-

brain coverage provided by fMRI. Resting-state fMRI data was

acquired in 17 consenting healthy volunteers in a 3T scanner.

A set of 31 regions of interest (ROIs) were obtained from previous
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Figure 5. Scale-free Dynamics in Spontaneous fMRI Signals

Power spectrum of spontaneous fMRI signal was computed for 31 brain

regions (10 pairs of homologous regions were each averaged together; for

details see Table S2).

(A) Normalized power spectrum (total power/variance = 1) for each brain region

is plotted in a log-log plot. Line colors are grouped by cortical networks.

Purple: default network; blue: attention network; orange: visual network;

green: motor network; cyan: saliency network; red: nonneocortical group.

(B) Each power spectrum in (A) was fit with a power-law function P(f) f1/f b.

The exponent b was entered into an ANOVA with brain network as the main

factor. Error bars denote SEM. The effect of network was highly significant

(F5,15 = 5.05, p = 0.006). The two regions belonging to the saliency network,

right frontoinsular cortex (R FI) and dorsal anterior cingulate cortex (dACC),

were plotted separately for visualization, given the wide difference between

their exponents. The nonneocortical group included the cerebellum, hippo-

campus and thalamus. Using Tukey/Kramer post hoc test, significant differ-

ences were found between the default network and nonneocortical regions,

and between the visual and nonneocortical regions.

(C) Total fMRI signal variance and power-law exponent were correlated across

brain regions.
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studies by the authors or published articles (see Table S2),

among which there were 10 pairs of homologous brain regions.

Other than three ROIs located outside the neocortex—hippo-

campus, cerebellum and thalamus—the remaining regions

resided in five known brain networks (attention, default, motor,

saliency, and visual; Fox and Raichle, 2007).

The normalized power spectrum (i.e., power spectral density,

with total power/variance = 1) was computed for the fMRI signal

time course from each ROI for each fMRI run, then averaged

across runs and across subjects. Power spectra from homolo-
gous brain regions were averaged together, yielding one average

power spectrum for each of 21 brain regions (Figure 5A). The

power spectra of spontaneous fMRI signals roughly followed

a straight line when plotted in log-log coordinates (Figure 5A),

suggesting that spontaneous fMRI signals are also scale-free.

The power-law exponents obtained by a least-squares fit are

listed in Table S2, with a mean of 0.69 across brain regions,

which differed significantly from the power-law exponent of

ECoG signals (mean 2.2 for < 0.1 Hz range in wakefulness)

(p < 10�6). The origin of this difference between ECoG and

fMRI signal power-law exponents warrants future investigation.

The power-law exponent of the fMRI signal was found to vary

across brain networks. The visual regions, default network and

dorsal anterior cingulate cortex (dACC) had the steepest power

spectra, characterized by the largest power-law exponent b.

On the other end, the cerebellum and hippocampus had the

shallowest power spectra, characterized by the smallest

power-law exponent. The motor and attention network regions

were intermediate. An ANOVA suggested that the effect of brain

network on power-law exponents was highly significant (F5,15 =

5.05, p = 0.006). By contrast, when the total variance of the

fMRI signal (listed in Table S2 for each brain region) instead of

the power-law exponent was entered into the ANOVA, no signif-

icant network effect was found (p = 0.3). Nonetheless, there

was a moderate but significant correlation between fMRI signal

variance and power-law exponent across brain regions (Fig-

ure 5C). Of note, the small power-law exponents of the cere-

bellum and hippocampus reflected a proportionally smaller

amount of low-frequency activity as compared to the neocortex,

consistent with previous neurophysiological observations and

considerations of their respective anatomical structures (Bullock

and Basar, 1988; He and Raichle, 2009).

Control Recordings and Analyses
Because fluctuations of resistivity in electronic conducting mate-

rials can also exhibit ‘‘1/f noise’’ (Weissman, 1988), it is important

to demonstrate that our data were not contributed by instrument

noise. To address this, we conducted a dummy ECoG recording

in a standard epilepsy in-patient monitoring room without the

presence of a patient. The power spectrum of the dummy

recording (duration 46 min) is plotted in log-log coordinates in

Figure S6, together with the average ECoG power spectrum

from a patient. The magnitude of the dummy recording is far

below that of ECoG signals recorded from the patient. Further,

the power spectrum of the dummy recording does not follow

a power-law distribution. Fitting a power-law function P f 1/f b

to the low (<0.1 Hz) and high (1–100 Hz) frequency range none-

theless yielded exponent of 0.6 and 1, respectively, which are

significantly different from power-law exponents of brain ECoG

signals (p < 0.0001 for both frequency ranges). Moreover, no

significant nested frequencies were observed in the dummy

recording time series.

Our fMRI data were previously published in Fox et al. (2007).

In this study, the authors acquired fMRI signals from a water

phantom in the same scanner, the power spectrum of which

was close to white noise (see Figure S4 in Fox et al., 2007), which

differs significantly from the power spectrum of fMRI signals

recorded from the brain (see Figure 5A).
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Figure 6. Scale-free Dynamics in Earth Seismic Waves (Left Column)

and Stock Market Fluctuations (Right Column)
(A) Power spectra plotted in log-log plots. For seismic data, frequency is in Hz

(cycle/s). For stock market data, frequency is in cycle/day. The power-law

exponent b for seismic and stock market data was 1.99 and 1.95, respectively.

(B) Top: Phase-amplitude cross-frequency coupling assessed by MI Z score,

plotted as color in the 2D frequency space. Only significant values (p < 0.05

after Bonferroni correction) are shown. Bottom: Example nested-frequency

patterns for selected frequency pairs. Amplitude of the higher frequency was

averaged at different phases of the lower frequency and plotted.
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A recent study showed that microsaccades could produce

artifactual broadband activity in the EEG signal (Yuval-Green-

berg et al., 2008). Although it was suggested that these concerns

do not apply to ECoG recordings (Yuval-Greenberg et al., 2008),

we confirmed that the current results were not contributed by

muscle artifacts related to eye movements by plotting the

strength of cross-frequency coupling across the cortical surface

(Figure S7). All ECoG results presented in this paper were ob-

tained under the common-mean-reference montage; therefore,

artifacts related to eye movements should be most pronounced

in electrodes closest to the eyes (Melloni et al., 2009; Yuval-

Greenberg et al., 2008). The results in Figure S7 confirmed that

significant nested frequencies were present across wide cortical

regions and did not exhibit an anterior-posterior gradient.

Comparison with Other Scale-free Dynamics in Nature
Thus far we have shown that arrhythmic, scale-free brain activity

contains rich temporal structures and is behaviorally relevant.
362 Neuron 66, 353–369, May 13, 2010 ª2010 Elsevier Inc.
However, since scale-free dynamics are ubiquitous in nature,

one potentially revealing question is whether other scale-free

dynamics also contain temporal structures and functional mean-

ings and whether their structures are similar to or different from

those observed in brain activity. While it is up to economists

and physicists to decide whether scale-free dynamics in market

fluctuations contributed to the recent economic crash (Cho,

2009) or if similar dynamics can initiate earthquakes, we merely

investigated the potential temporal structures present in these

scale-free dynamics and compared them with those in scale-

free brain activity.

We conducted nested-frequency analysis on spontaneous

earth seismic waves (collected over 4 months) and fluctuations

of the Dow-Jones Industrial Average Index (collected over

80 years). Both earth seismic waves and stock market fluctua-

tions followed a power-law distribution in their temporal power

spectrum (Figure 6A). Moreover, the power-law exponent of

both data types (1.99 for seismic waves and 1.95 for stock

market) was close to that of the brain ECoG activity (mean 2.2

during wakefulness for <0.1 Hz range).

Like arrhythmic brain activity, both earth seismic waves and

stock market fluctuations contained extensive nested frequen-

cies (Figure 6B). However, the exact patterns of nested frequen-

cies in these signals differed from those in brain activity. For

example, a bimodal nested-frequency distribution with two

preferred phases is seldom seen in the ECoG signals (<10% of

all electrodes), but was prominent in earth seismic waves. This

bimodal distribution in earth seismic waves might be due to

different generators in the earth propagating to the same surface

location; by contrast, the rarity of a bimodal nested-frequency

pattern in the ECoG signal might imply a more homogeneous

source of generators. The observation that nested frequencies

are prominent in these natural and economic scale-free

dynamics reinforces the conclusion that the extensive nested

frequencies observed in ECoG signals were contributed

primarily by scale-free brain activity and not by periodic brain

oscillations.

Simulations of Scale-free Dynamics
Finally, to better understand the relationship between nested

frequencies and scale-free dynamics, we constructed several

simulated scale-free time series and examined whether they

contained nested frequencies. All simulated time series were

analyzed in a similar manner as the ECoG data for temporal

power spectrum and nested frequencies.

First, as a control analysis, we performed nested-frequency

analysis on a Gaussian-distributed white-noise time series

(Figure 7A, left). This time series does not contain any nested

frequencies (Figure 7A, right). Second, we constructed a scale-

free time series by filtering this white-noise time series in the

frequency domain to yield a power-law distribution of P f 1/f b

(b = 1.8) while maintaining the random phase of the white-noise

time series. This spectrally-generated scale-free time series with

a power-law exponent close to that of brain ECoG activity also

did not contain any nested frequencies (Figure 7B).

Next, because the power-law exponent of the ECoG signals

was close to 2, which is typical of a random-walk process (i.e.,

Brownian motion), we constructed a random-walk model by



Figure 7. Power Spectra and Nested-Frequency Patterns of Simulated Scale-free Dynamics

All simulated time series were set to 512 Hz sampling rate, and subjected to the same analyses as the ECoG data. In each panel, the left graph shows the power

spectrum plotted in log-log scales; the right graph shows cross-frequency coupling strength (MI Z score) as color in the 2D frequency space (color range from

Z = 3.84 to Z = 20, all p < 0.05 after Bonferroni correction).

(A) A white-noise time series following Gaussian distribution from a pseudorandom number generator (mean = 0, variance = 10). The inset in the left graph shows the

distribution of the values in the time series. No significant cross-frequency coupling was found. This white-noise time series was used as input to models in (B)–(E).

(B) Spectrally generated scale-free time series. The white-noise time series in (A) was filtered in the frequency domain by P(f) f 1/f b (b = 1.8), without altering the

phase, and then inverse-Fourier transformed. This time series does not have nested frequencies.

(C) A first-order autoregressive (AR-1) process: x(t) = f x(t � 1) + 3(t), where f = 0.9 and 3(t) is the same white-noise time series as in (A).

(D) Aggregate of three AR-1 processes: x(t) =
P3

i = 1

[fi xi(t� 1) + 3i(t)], where f1 = 0.1, f2 = 0.5, f3 = 0.9, and 3i(t) is the same white-noise time series as in (A). Neither

(C) nor (D) has significant nested frequencies.

(E) A random-walk model: x(t) = x(t� 1) + 3(t), where 3(t) is the same white-noise input as above. This random-walk time series does have significant nested frequencies

across many frequency pairs. The inset shows, for one example frequency pair, the higher-frequency amplitude averaged at different phases of the lower frequency.

(F) A random-walk model: x(t) = x(t � 1) + 3(t), where 3(t) is a white-noise time series following Gaussian distribution generated using random numbers from

physical source (atmospheric noise). This random-walk model does not have nested frequencies.
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summing over a white noise time series: x(t) = x(t� 1) + 3(t), where

3(t) is the same white noise time series as in Figure 7A. To our

surprise, this random-walk process contained statistically signif-

icant nested frequencies (Figure 7E).
We then added a single parameter to the above random-walk

model to change it into a first-order autoregressive (AR-1)

process: x(t) = 0.9 x(t� 1) + 3(t). The addition of this single param-

eter eliminated nested-frequency patterns (Figure 7C). Despite
Neuron 66, 353–369, May 13, 2010 ª2010 Elsevier Inc. 363



Figure 8. A General Picture Emerging from the Present Results

Different mechanisms in a variety of systems—including the human brain,

earth seismic activity, stock market fluctuations, and simulated time series—

can all give rise to scale-free activity exhibiting a 1/f b power spectrum, but

these different dynamics have different nested-frequency patterns. Hence,

different nested-frequency patterns might be indicative of different underlying

generative mechanisms, even when the gross power spectrum is similar.
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the seemingly small change in the model, an important differ-

ence between this AR-1 process and the random-walk process

in Figure 7E is that the random-walk process has long-range

temporal dependence (also called ‘‘long memory’’) whereas

the AR-1 process does not.

Next, we constructed a model of an aggregate of AR-1

processes (Figure 7D). The approach of aggregating a few

AR-1 processes to model scale-free dynamics (in a restricted

frequency range) has been used extensively in economics

(Erland and Greenwood, 2007; Granger, 1980) and has been

applied with considerable success to modeling the power-law

distribution of psychological data, such as the fluctuations of

reaction times in a decision making task (Wagenmakers et al.,

2004; Ward, 2002). Contrary to our initial conjecture, such a

model did not contain any significant nested frequencies

(Figure 7D). Importantly, although a mixture of AR-1 processes

could produce the appearance of ‘‘1/f noise,’’ such dynamics

do not have genuine long-range temporal dependence that is

present in a random-walk process (Wagenmakers et al., 2004).

It might be counterintuitive that a random-walk process con-

tained structures. One possibility is that this is because of the

higher-order statistical regularities present in the arithmetic

pseudorandom number generator used for generating the white

noise input, which are invisible in most applications but produce

interesting patterns under the sensitive nested-frequency

analysis and when the modeled process contains long memory.

To verify this conjecture, we obtained true random numbers from

physical source (atmospheric noise, www.random.org). (It is

theoretically impossible to prove that a random number gener-

ator is truly random, however, random numbers from trustable

physical sources are generally much more random than arith-

metic pseudorandom numbers, see www.random.org for

further discussion.) These uniformly distributed random numbers

were transformed into a Gaussian-distributed random number

series, and used as the input 3(t) to the random-walk model
364 Neuron 66, 353–369, May 13, 2010 ª2010 Elsevier Inc.
x(t) = x(t � 1) + 3(t). (The generation of Brownian random walks

requires random number inputs to follow a Gaussian distribution.)

The resultant random-walk time series, with a 1/f 2 power spec-

trum, did not have any nested frequencies (Figure 7F), confirming

the foregoing conjecture that the nested frequencies in Figure 7E

were a manifestation of the higher-order statistical regularities

present in the pseudorandom number generator.

The above simulations suggest that the combination of even

very weak structures in the underlying generative process and

long-range temporal dependence are sufficient to produce

nested frequencies in scale-free dynamics. However, we caution

that the class of linear models constructed here constitutes only

a subset of all models that can give rise to scale-free dynamics

(for reviews see Bak, 1996; Frank, 2009; Mandelbrot, 1999;

Ward and Greenwood, 2007; Weissman, 1988). It would be

beyond the scope of the present paper to exhaustively investi-

gate these models, but the current results should encourage

future theoretical and modeling work to further explore the

temporal structures of scale-free dynamics generated by

different mechanisms.

DISCUSSION

In summary, we have shown that, contrary to common assump-

tions, arrhythmic, scale-free brain activity, which makes up a

significant portion of the spontaneous electrical field potentials

recorded from the brain, contains a rich temporal organization

with the phase of lower frequencies modulating the amplitude

of higher frequencies in an upward progression across the

frequency spectrum. We further show that the power-law expo-

nent of scale-free brain activity is modulated by task perfor-

mance in a brain network-specific fashion, suggesting functional

significance for this activity. Spontaneous fMRI signals are also

scale-free, and its power-law exponent varies across brain

regions, being largest in visual and default-network regions

and smallest in cerebellum and hippocampus. Other scale-free

dynamics in nature, such as earth seismic waves and stock

market fluctuations, also contain extensive nested frequencies,

whose exact patterns differ from those of brain activity. Hence,

it appears that different mechanisms in a variety of systems

can give rise to scale-free dynamics (Frank, 2009), but the fine

temporal structures in these dynamics differ across systems,

providing clues toward understanding the different underlying

generative mechanisms (Figure 8). These results suggest that

investigations on scale-free dynamics should go beyond charac-

terizing the gross 1/f b power spectrum and aim at revealing their

fine spatiotemporal organization and functional significance.

The Interpretation of Nested Frequencies
in Scale-free Dynamics
Whereas the interpretation of nested brain oscillations is

relatively straightforward (Jensen and Colgin, 2007; Schroeder

and Lakatos, 2009), that of nested frequencies in arrhythmic

brain activity is less intuitive. In general, nested frequencies in

scale-free dynamics also mean that at a particular phase of the

lower-frequency fluctuation, such as its trough or peak, the

amount of higher-frequency activity increases. For example,

the trough of surface-recorded slow cortical potentials (SCPs),

http://www.random.org
http://www.random.org
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which constitute the low-frequency end of the 1/f b power spec-

trum (He and Raichle, 2009; Monto et al., 2008), is associated

with increased cortical excitability and increased amount of

higher-frequency activities (Birbaumer et al., 1990; He and

Raichle, 2009; Rockstroh et al., 1989; Vanhatalo et al., 2004).

This is in line with comments on ‘‘1/f noise’’ in the physics field

suggesting that perturbations at long wavelength cause energy

dissipations at all length scales (Bak et al., 1987). Furthermore,

the nonrandom distribution of preferred lower-frequency phase

in ECoG activity, which clustered around phase 0 and ± p, is

indicative of specific underlying neurobiological mechanisms.

Nonetheless, as pointed out by Kramer et al. (2008), complex

waveforms such as edges or triangular waves could also

produce significant results in nested-frequency analysis. While

artifacts in EEG/ECoG recordings can certainly create sharp

edges, we emphasize that an artifact-free ECoG record (such

as electrode #64 in Figure 2C) is also full of complex waveforms

that are nonsinusoidal, indeed waveforms that make up scale-

free brain activity. These complex waveforms produced by the

brain should not be considered artifacts or noise simply because

they are nonoscillatory; their functional meanings deserve and

demand future investigation. Our view is similar to that of Bullock

et al. (2003), who suggested that ‘‘the wide-band, apparently

stochastic background activity in the EEG may in part consist

of structured events or sequences, as in speech or music,’’

and that ‘‘one is compelled to presume that the power spectrum

is an inadequate descriptor, as it would be for speech or music.’’

We speculate that scale-free brain activity most likely plays an

important role in the brain’s operation, and an important goal

for future work is to crack the code contained therein. We would

not be surprised if new mathematical tools will need to be devel-

oped before this goal is within reach. The present study, by

showing that across different systems a similar 1/f b power spec-

trum can mask unique nested-frequency patterns specific to

a system, constitutes an initial, modest step toward this goal.

Linkage to Previous Work
This study follows from a recent line of research emphasizing the

physiological significance of broadband LFP, EEG, and ECoG

activity (Belitski et al., 2008; Bressler et al., 1993; Henrie and

Shapley, 2005; Manning et al., 2009; Miller et al., 2009a,

2009b; Montemurro et al., 2008; Onton and Makeig, 2009; Siegel

and König, 2003; Young et al., 1992). In light of the present

results, broadband phenomena could (at least in many cases)

be reinterpreted as changes in arrhythmic, scale-free brain

activity, which are only sometimes accompanied by brain oscil-

lations (see, e.g., Figure 4D herein and Henrie and Shapley,

2005; Siegel and König, 2003). The recently developed informa-

tion-theoretic approach may be a promising tool for discerning

the functional significance of broadband brain activity (Belitski

et al., 2008; Montemurro et al., 2008; Panzeri et al., 2010).

Miller et al. (2009a) described an overall shift of power spec-

trum in >25 Hz range during a hand motor task, without any

significant change in the power-law exponent. The conservation

of the power-law exponent in the higher-frequency range is

consistent with our finding (Figures 4 and S4). By contrast, we

did not find any overall increase of power in this frequency range.

This is likely because we used a widely spaced task paradigm
that is much less intensive than the paradigms used in Miller

et al. (2009a) and other previous studies showing broadband

power increase (e.g., Belitski et al., 2008; Henrie and Shapley,

2005; Manning et al., 2009; Siegel and König, 2003; Young

et al., 1992). Our paradigm, especially the ‘‘cued’’ condition, is

similar to a vigilance task, during which the low-frequency

power/variance is reduced (Schroeder and Lakatos, 2009),

which accounts for the decrease of power-law exponent that

we observed (Figures 4 and S4). Importantly, this does not

mean that the SCP in this frequency range is suppressed. On

the contrary, in such tasks, a negative shift of the SCP is

expected to develop in activated brain regions, including the

‘‘Bereitschaft potential’’ in the motor cortex and the ‘‘contingent

negative variation’’ in the anterior cingulate cortex, correspond-

ing to motor performance and anticipatory attention, respec-

tively (Kornhuber and Deecke, 1965; Walter et al., 1964). Similar

negative SCP shift can occur in any activated brain region with

depolarization of superficial layers (He and Raichle, 2009). This

negative SCP shift might be accompanied by a decrease of

the fluctuation around the mean, giving rise to the decreased

amount of power in the low-frequency range and thus the

decreased power-law exponent.

Lastly, the relationship between scale-free brain activity and

neuronal avalanches (Petermann et al., 2009) warrants future

investigation. In line with our proposal that merely characterizing

the power spectrum is insufficient for investigating scale-free

dynamics and one has to dig deeper in search for the fine spatio-

temporal structures (Figure 8), these authors stress that a 1/f b

(b z2) power spectrum is not sufficient for the emergence of

neuronal avalanches. Because neuronal avalanches consist of

negative peaks of neural field potentials, and the raw waveform

of field potentials is the scale-free brain activity giving rise to the

1/f b power spectrum, a relationship between neuronal

avalanches and scale-free brain activity is not only conceivable

but indeed seems plausible. Since neuronal avalanches are

specific to superficial layers of the cortex (Stewart and Plenz,

2006), a first step might be to investigate whether the 1/f b power

spectrum has any heterogeneity across cortical layers. Surpris-

ingly, we are not aware of any published record on this, and

urge such a systematic investigation, which would not only

shed light onto the potential relationship between scale-free

brain activity and neuronal avalanches but would also be

informative toward the mechanisms underlying scale-free brain

activity itself.

The Genesis of Scale-free Brain Activity
The power-law distribution is a common attractor distribution

that can emerge out of many different generative mechanisms

(Frank, 2009), and a variety of models have been built to simulate

scale-free dynamics. Here, we focus on potential neurobiolog-

ical mechanisms that might underlie scale-free brain field

potentials. One obvious candidate is the 1/f b noise present in

neurotransmitter release (Lowen et al., 1997) and neuronal spike

trains (Gisiger, 2001; Grüneis et al., 1989; Takahashi et al., 2004;

Yamamoto, 1991). However, since these phenomena remain

isolated observations, they might not be sufficient to account

for the ubiquitous scale-free dynamics in EEG or LFP recordings,

and a brain-network perspective is likely also important.
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Notably, functional brain networks extracted from voxel-by-

voxel spontaneous fMRI signal correlations have a connectivity

distribution that follows power-law scaling with an exponent

close to 2, suggesting a scale-free network topology (Eguı́luz

et al., 2005; van den Heuvel et al., 2008). Furthermore, the geom-

etry of axonal and dendritic trees exhibits self-similarity and

scale-invariance properties (Bok, 1959; Freeman, 2007), and

simulations show that if axon diameter is dictated by the need

to transport materials to the synaptic terminals they would be

expected to follow a power-law distribution with an exponent

of 2 (Chklovskii and Stepanyants, 2003). While an important

future direction in complexity science concerns the bridging of

complex networks with complex dynamics (Barabási, 2009),

and the relation between scale-free and small-world networks

remains an area of active research (Bullmore and Sporns,

2009), we here tentatively propose that scale-free brain field

potentials could be produced by Poisson-like spike trains prop-

agating through scale-free brain networks composed of hetero-

geneous excitatory neurons and that the addition of inhibitory

neurons introduces a time constant to the network and thus

produces periodic brain oscillations added to the scale-free

brain activity (another mechanism of producing oscillations is

via cellular pacemakers). In line with recent neurophysiological

observations (Logothetis et al., 2007), this mechanism does

not involve frequency-dependent cortical tissue filtering of field

potentials. While our proposal remains to be tested explicitly, it

is consistent with recent results from optogenetic manipulations

showing that activation of fast-spiking interneurons selectively

amplifies gamma oscillations, whereas activation of pyramidal

neurons amplifies lower frequencies, the profile of which resem-

bled 1/f b power spectrum (see Figure 3D in Cardin et al., 2009).

This proposal is also consistent with recent simulations of brain

networks (Freeman and Zhai, 2009; Thivierge and Cisek, 2008).

In Freeman and Zhai (2009), Poisson-like spike trains were con-

volved with an impulse response function representing dendritic

response and summed, the result of which was scale-free

dynamics similar to that recorded by ECoG; the addition of inhib-

itory neurons introduced narrow-band oscillations that appeared

as local peaks rising above the 1/f b distribution in the power

spectrum. Similarly, in Thivierge and Cisek (2008), arrhythmic

network spikes were shown to be a direct result of heterogeneity

among modeled pyramidal neurons, and the addition of inhibi-

tory pathways introduced higher-frequency activities. This

model also showed that global synchronization can emerge

out of arrhythmic neuronal activity and that neuronal spikes

have long memory—a hallmark of scale-free dynamics.

An influential model of ‘‘1/f noise’’ is the self-organized criti-

cality (SOC) theory (Bak, 1996; Bak et al., 1987), which has

been applied extensively to simulate brain networks (Shin and

Kim, 2006), neuronal avalanches and ‘‘1/f noise’’ (de Arcangelis

et al., 2006; Levina et al., 2007; Lin and Chen, 2005). Although

the SOC theory might be more suited to describe neuronal

avalanches (Petermann et al., 2009), in our view, convincing

evidence suggesting that it is the underlying mechanism giving

rise to the 1/f b activity in raw EEG/LFP activity is still lacking.

For example, the SOC theory emphasizes the power-law expo-

nent being close to 1, whereas the power-law exponent of empir-

ical electrophysiological recordings is usually close to 2 (see
366 Neuron 66, 353–369, May 13, 2010 ª2010 Elsevier Inc.
Figure 1 herein and Freeman and Zhai, 2009; Miller et al.,

2009a; Milstein et al., 2009). Nonetheless, recent extensions of

the SOC theory to include a broader range of power-law expo-

nents (De Los Rios and Zhang, 1999) might aid in expanding

its explanatory power.
Implications for Psychology and Cognitive Sciences
Scale-free dynamics are widely present in the fluctuations of

human cognitive and behavioral performance (Gilden, 2001)

and even flight behaviors of Drosophila (Maye et al., 2007).

Because the brain evolved through organisms’ struggles in

coping with the external world and its main function is to proac-

tively act upon the world through its sense and motor organs for

the sake of the organism’s survival, it is hardly surprising that the

statistical properties of the brain’s dynamics reflect the statistical

properties of the environment and the universally present scale-

invariance thereof; and in turn it is hardly surprising that the

cognition and behavior as well as music produced by the human

brain follow the same statistical properties. Indeed, several well

established psychophysical laws applicable across domains

and species, including Weber’s law, can be derived simply

from a scale-invariance principle (Buzsaki, 2006; Chater and

Brown, 1999). In line with our results showing that the power-

law exponent decreased during task performance in activated

brain regions, it was found that the slope of the 1/f b power spec-

trum in reaction time fluctuations varied parametrically with task

difficulty, being steepest for easiest tasks and progressively

shallower as task difficulty increased (Ward, 2002). Lastly, given

that the power-law exponent of spontaneous ECoG signals is

close to 2, it is of interest to note that the power spectra of

some cartoons are approximately 1/f 1, whereas those of realistic

paintings and photographs are close to 1/f 2, and impressionist

paintings have spectra somewhere in between (Balboa and

Grzywacz, 2003; Ward, 2002).
Conclusions
We have demonstrated a fine temporal structure and functional

significance of arrhythmic, scale-free brain activity. These results

should motivate further research into this hitherto elusive form of

brain activity that resides behind the mask of the universal 1/f b

power spectrum observed across nature and encourage future

empirical and theoretical work to connect scale-free brain

activity with the mainstream of electrophysiological brain

research including brain oscillations, event-related potentials,

and intrinsic network activity, and further to explore its implica-

tions for cognitive psychology and brain disorders.
EXPERIMENTAL PROCEDURES

ECoG Data Collection and Power Spectral Calculation

Eight patients undergoing surgical treatment for intractable epilepsy partici-

pated in the study. To localize epileptogenic zones, patients underwent a

craniotomy for subdural placement of electrode grids and strips followed by

1–2 weeks of continuous video and ECoG monitoring. The placement of

electrodes and the duration of monitoring were determined solely by clinical

considerations. All patients gave informed consent. ECoG signals were split

and sent to both the clinical EEG system and a research EEG system (Syn-

Amp2 RT, Neuroscan, DC-coupled recording). All data in the present study
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were from the research amplifier. For details on patient and data collection

information see Supplemental Experimental Procedures and Table S1.

fMRI Data Collection and Analyses

Resting-state fMRI data (with visual fixation) were collected from 17 normal

healthy volunteers on a 3T Siemens Allegra MR scanner. Each subject

completed 4 fMRI runs, each run lasting 7 min. Standard fMRI data prepro-

cessing procedure was used. The normalized power spectra were derived

from the lagged autocorrelation functions using a Bartlett smoothing proce-

dure. For details see Supplemental Experimental Procedures.

Earth Seismic Wave and Stock Market Data Collection

Continuous natural seismic wave data (sampling rate 100 Hz) were collected

by University of Nevada, Reno seismic network. The historical daily prices of

Dow-Jones Industrial Average index from October 1, 1929, to April 9, 2009,

were downloaded from Yahoo! Finance website.

Nested-Frequency Analysis

To assess cross-frequency phase-amplitude coupling, an inverted entropy

measure was used to yield a modulation index (MI), following Tort et al.

(2008). The MI was then compared with shuffled data to obtain a Z score

measurement of cross-frequency coupling strength (MI Z score). For details

on the computation of the MI and the shuffling procedure see Supplemental

Experimental Procedures.
SUPPLEMENTAL INFORMATION

Supplemental Information includes eight figures, two tables, Supplemental

Experimental Procedures, and Supplemental Note and can be found with

this article online at doi:10.1016/j.neuron.2010.04.020.
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