THE SACKLER MESSENGER
ORIENTATION EDITION

Features:

DESIGNING YOUR GRAD AND POST DOC EXPERIENCE
One student describes how taking a NYU-sponsored class changed the course of her life

NAVIGATING THE PUBLISHING LANDSCAPE
Preprinting on the rise

THE BLIND DATE OF SCIENCE
Firsthand accounts of rotations at Sackler
Please join me in welcoming our 58 incoming PhD students! This new class includes several future scientists potentially interested in our new training areas of Biomaterials Science, Biostatistics and Epidemiology. These three programs joined our Quantitative Biology cluster, which also includes Biomedical Imaging, Molecular Biophysics and Systems & Computational Biomedicine (formerly Biomedical Informatics).

If you haven’t yet visited our virtual tour website, starring your fellow graduate students and faculty, please consider doing so! This site includes 18 videos featuring research areas, shared resources (Cores), and information about life as a graduate student. You can also use the interactive map of our campus, featuring the NYU Langone ferry. Our next launch will be a podcast — The Graduate School Insider — which focuses on a variety of topics of interest to prospective and current graduate students. Topics include PhD admissions, things to consider when deciding to pursue an MD/PhD, transitioning to a post-doc position and more!

Other initiatives in the pipeline include our continuing efforts to provide a broad skill set to our graduates. In recognition of the entrepreneurial spirit of many of our students, we are offering a new biomedical entrepreneurship program in collaboration with the NYU Industrial Liaison/Therapeutics Alliances/NYU Entrepreneurial Institute team. This program is open to senior PhD students (years 4+) and will train participants in venture creation in biomedicine, spanning devices to therapeutics to IT. Associated courses will focus on value proposition, regulatory processes, industry-specific requirements, and more. The first course started in March, with about 10 students registered. Additional courses will be offered this Fall. I encourage you to visit their website, if interested! This wave of entrepreneurship is also reflected in the newly launched Biotech “incubator” at Varick Street! Pioneered by Bob Schneider, PhD, in partnership with BioLabs, this new center – named BioLabs@NYULangone – will house startup companies whose mission is to turn laboratory discoveries into successful businesses.

I look forward to working with you all this coming year on these initiatives and more!

Welcome again,

Naoko
THE SACKLER ADMINISTRATION

Lisabeth Greene, MA
Assistant Director, Graduate Student Services

Valerie Newsome, PhD
Program Manager, Diversity and Inclusion

Jessica Dong, MA
Project Manager, PhD Program

Heather Petrucci, MSc
Project Manager, Medical Scientist Training Program (MSTP)

Amanda Tufekcier
Project Coordinator, SURP

You can find Dr. Naoko Tanese in the Skirball 3rd Floor Administration area.

The rest of the Sackler Administration can be found in the Old Public Health Building (OPH, 341 E 25th St, corner of 1st Avenue), on the 2nd floor.
Dear Sackler community,

Congratulations and welcome to the incoming class of 2017! We are so excited to have you join the community here at NYU Sackler Institute of Graduate Biomedical Sciences. At NYU, you will find a diverse community, top-notch research and work-life balance. As your Sackler Student Council (SSC) we plan to uphold these three pillars of the Sackler community through our representation of the student body! We, the SSC, are made up of second and third year PhD students, and were all in your shoes in the past couple of years. We would love to share all that we have learned since our own Orientation. One of the ways we are trying to ease the transition is by reinstituting the “Big sib/Little sib” mentoring program from last year. We pair current Sackler students with incoming students to act as their guide for their first year in graduate school. Many of us found this mentorship extremely useful for everything related to graduate school such as picking rotations, classes, training programs and thesis labs, as well as, how to live economically in NYC! Thanks to everyone for participating! As the SSC, we strive for research and academic excellence while maintaining past Sackler social traditions. We plan to have a lively Orientation, Halloween and Holiday party, Pumpkin Carving, Movie Night, Spring Formal and Beach Day, and continue our ritual happy hours! While it is important to respect past traditions, we plan to add some new social and bonding events, including opportunities for community outreach. We believe this is important to strengthen the Sackler community and create an atmosphere of inclusivity so everyone finds their home within Sackler! We are thrilled to serve as your link between student, faculty and the administration, as well as, to have the opportunity to contribute to the Sackler legacy. We will continue to have class representatives to make sure every voice is heard within Sackler. Please feel free to reach out and share your opinions with us!

We can’t wait to meet all of you!

- SSC 2017-2018
THE BLIND DATE OF SCIENCE
Firsthand accounts of rotations at Sackler

By Matthew Keller

Every August, a new class of students arrives at the NYU Sackler Institute eager to begin their academic journeys. It is a whirlwind, merging a move to NYC, beginning classes, and acclimating to graduate student life. Nonetheless, this tumultuous time kicks off just the start of our scientific careers. Numerous milestones stand between nascent researchers and doctorate degrees; however, few are as important as rotations. Rotations serve the necessary purpose of exposing students to mentors, diverse fields of study, and lab environments which in which to conduct thesis work the Sackler Institute offers. For those less familiar with the rationale underpinning rotations—a tradition, new students choose three labs to spend upwards of three months as a ‘trial period’ of sorts. Each student then evaluates his or her experience and determines which lab they would like to perform their thesis work following the last rotation. The gravity of this selection cannot be understated. Selecting where to perform your thesis is akin to selecting a home and can define the remaining years of one’s graduate school career.

While rotations are an exciting period for many graduate students, it is also a daunting process. The first step involves picking which professors to approach. “I made a list based on the science,” says third year graduate student Patty Martin, “After going to the NYU website and looking through the papers and abstracts from each lab, I ranked my choices and sent the PIs [principal investigators] an email.” Research interests are a standard, yet valid, means of refining a list of mentors and labs to consider. And, as Patty shrewdly demonstrated, email is an effective tool (and frequently utilized) to break the ice between student and professor once a decision begins to solidify. Yet, it can likewise be helpful to meet professors and speak with them in person before finalizing any commitments. Alexandria (Alex) Hammond, a first-year student, shared her experience attending the annual open houses hosted by individual departments.

“There are a lot of open houses. I got to meet a lot of professors there. I was able to preview their personalities and how they interacted with students. I was able to put a face to a name.”

Departmental open houses provide a welcoming space for the Sackler community to observe and ask questions about recent cutting-edge research conducted at the university. Simultaneously, they provide a rare opportunity to speak one-on-one with several professors, post-docs, and peers. Open houses are an excellent resource for those who prefer navigating potential rotation prospects in person. Selecting labs and finalizing rotation details requires effort and determination. But this hard work pays off. The real fun begins once you have settled into your new rotation. The first few weeks are a time of learning and adjustment. Part of the rotation student experience is meeting new people, picking up new techniques, and scavenging for a place in the fridge to stuff your lunch. Chances are, you will be tasked with a project, and you may or may not be paired with a more senior lab member. During this time, it is also critical to get face time with the boss. Professors are often very busy. Frequently their schedules are packed and may have only small windows to speak with rotation students. However, this should not prevent any new member from approaching prospective PIs with questions, concerns, and comments during rotations. In fact, this is often encouraged and demonstrates interest and preparedness. “Have open conversations with your PI. Everything from ‘is there space in the lab to what will my hours look like to what will I work on,’” suggests Patty Martin.

Open and frequent conversation between PI and rotation student helps to avoid future surprises and miscommunications and makes choosing a lab a much more pleasant experience.

Waxing poetic, Alex Hammond even better illustrates the circumstances by noting that in a way “you are dating them, but they are also dating you.”

In this way, rotations are a lot like blind dates. Two strangers meet for the first time knowing only the bare minimum about each other. They carefully plan a time and place, and eventually agree to meet. Frank conversations occur that encourage open mindedness and self-evaluation. For most it becomes obligatory for both parties to reach some mutual conclusions on values, opportunities, and expectations for the future in order to take the next step. The more time spent getting to know potential mentors and lab mates during one’s rotation, the more likely an ideal fit will be found for future scientific work. When all is said and done and the year of rotating is finally up, it comes the time to make a decision. Like the infamous next day phone call, deciding on lab is not always a smooth process. While choosing a lab is a very personal decision, a few tried and true
methods were repeatedly employed. The most frequent? Notes, first hand accounts, and the always dependable excel spreadsheet.

"I went back to the website and my notes. I made an excel spreadsheet...I talked to older students too," said Alex Hammond. Patty Martin also used a spreadsheet to make up her mind. "I had 76 criteria on an excel spreadsheet. These criteria are things that were important to me as a person and student...it was actually based off one of the posts on the National Institutes of Health (NIH) website."

Pro and con lists are helpful ways of ranking and quantifying rotation experiences. They allow you to itemize factors from each rotation that may be important to you as a student and scientist. And the NIH does, in fact, provide a publicly available checklist to help students begin narrowing the mentors and labs that represent a best fit. Lists are a powerful tool in assisting those having trouble coming to a meaningful conclusion. Nonetheless, is it also important to keep in mind you spend upwards of four years in the chosen lab. As Patty Martin finally concluded about this process:

"Your gut feeling matters, too."

First year rotations are a truly exceptional moment in our scientific tenure. It is one of the few periods that we can test, or one might say 'date' various labs of our choosing. The encouragement to explore and discover our individual passion or otherwise ignored topics of interest is a truly unique opportunity that will not appear for potentially many years to come and should not be taken for granted. Over the course of the year, rotations will put even the most experienced student through the gambit. It will be time of success, fun, and plenty of challenges. Each rotation passes in the blink of an eye, so sit back, enjoy, and the make the best of an exciting year. Don’t take it from me but from someone who recently has seen the other side:

"It’s been one of the best years of my life. It’s so much fun." – Alex Hammond.

Matt Keller is a 4th year PhD candidate in the Ken Codwell and Victor Torres labs. He is currently studying the role of autophagy in host defense and tolerance during Staphylococcus aureus infections. When not in the lab, Matt loves to dig into science fiction novels, pickup a video game and/or play as much volleyball around the city as possible.

Sneak Peek: Career development blog written by early career biomedical trainees

By Ada Weinstock, PhD & Arthee Jahangir, PhD

The idea for a career development blog originated in a meeting for all 17 institutions that received the NIH BEST (Broadening Experiences in Scientific Training) Grant in late October 2016. Major issues discussed in the meeting were the sustainability and dissemination of respective institutions’ career development programs, as well as how to get hands-on experience for the trainees to be more competitive for jobs. Dr. Ada Weinstock, a postdoc at NYU School of Medicine and the chair of the postdoc council, together with delegates from other institutions, thought that establishing a blog, focusing on career development through the program, will benefit all the above issues. Ideally the blog would reach trainees at NYU and would spread far beyond - to other institutions around the country (and possibly, the world) and to candidates which are searching for a graduate school or a postdoc position. Another added value is that the trainees participating in the blog will get actual experience in writing and editing, which will help them competitively for various types of careers.

The blog is expected to launch in early September and can be found on the NYU’s BEST program’s website, called NYU STEP (Scientific Training Enrichment Program). All students and postdocs at NYU School of Medicine and in STEM disciplines at Washington Square are welcome to be guest bloggers and editors. Reach out to the postdoctoral affairs office if you’re interested in contributing.

Here’s a sneak peak into one of our first blog articles:

Pipetting is not all we know!

Written by Disha Srivastava & Evelien Berends
Edited by Kristen D’Elia

Scientists like us - postdoctoral fellows and PhD students - are trained to design and execute experiments, analyze data, think analytically, and transcribe our findings into publications. It is commonly understood that we master these essential skills to succeed in academia. **However, for pursuing a successful career beyond the bench, is pipetting enough?** This question is relevant for both scientists who seek an independent scientific career and those who desire to move to non-academic sectors. The latter group often wonders about the different atmosphere in non-academic settings. How alien is the environment? Are our skills relevant? Are we prepared to take on the challenges? The NYU STEP (Scientific Training Enhancement Program) program recently offered a course called **The Business of Science for Scientists** that helps us learn the answers to some of these pertinent questions. We were intrigued by the title of the course as it uses two words, business and science, rarely seen together.

Look out for this article and others with the blog launch this September!
NAVIGATING THE PUBLISHING LANDSCAPE

Preprinting on the Rise

By Alla Peselis

One of the requirements for graduation is to produce at least one first author manuscript. This accomplishment might come in your first couple years, or it might come a bit later, but you will get there eventually. And once your manuscript is complete, you will likely be submitting it to the most prestigious journal, in which you or your advisor thinks it can be published. If all goes well, it will be accepted in the first round, reviewed quickly, and printed soon after. Unfortunately, for many of you, this will not be the case.

Over the last decade, the median review time at journals has grown from three to five months—if the manuscript is even accepted. If it is not accepted, you will have to reformat it for another journal of lower impact factor, repeating the process ad nauseam. It could be over a year from when you compile your experimental data into a polished narrative to when it actually gets published.

And the hurdles do not stop there. The last decade alone has seen a two-fold increase in published research articles, with biomedical science articles accounting for about 40% of the total amount. And yet, the top journals, including the elite trifecta of Nature, Science, and Cell, publish no more papers than they did 40 years ago. Moreover, these journals require more and more experiments for each paper published. This means a longer time to publication and, subsequently, a longer time until graduation.

Fortunately, a new trend is happening in the biological sciences with regard to publishing—preprinting. In place of manuscripts, which would ordinarily be submitted to a peer review journal, a preprint is instead uploaded to an open access, non-profit forum, without a formal review process. Members of the scientific community associated with the site will then inspect the manuscript to make sure it contains scientific content and does not pose a health or biosafety risk, and then post it where it can be viewed for free by anyone. Once posted, the manuscript receives a time stamp, a DOI (digital object identifier), and can even be commented on by other researchers.

There are several sites that have popped up where it is possible to preprint a manuscript, including PeerJ, F1000Research, and figshare. But, the most popular by far has been bioRxiv (pronounced "bioarchive" and run by Cold Spring Harbor Laboratory), a spinoff of arXiv (run by Cornell University Library), which has been preprinting articles in the fields of physics, mathematics, and computer science since the 1990s.

It would then seem that preprinting a paper would be the ideal solution for navigating the convoluted publishing landscape. However, some have raised several concerns regarding preprints. Some researchers, for example, worry that a manuscript placed online before it has been published will be "scooped" by another lab that replicates the material and publishes it first. The concern, therefore, is that preprints will exacerbate data hoarding, an endemic problem in the field. Unfortunately, this type of thinking leads to a slower dissemination of findings, and ultimately, a slower response to developing fields.

In part to combat the fear of being scooped, this March, the National Institutes of Health put out a notice stating that it has begun to accept preprints cited in the Bibliography, Biographical Sketch (essentially your CV), and Progress Reports for submitted grants and fellowships.

This not only gives legitimacy to the owners of a discovery in the eyes of the largest funding agency in the United States, but also helps scientists early in their career provide evidence of their efforts in their most recent work.

Another concern is that peer review journals will no longer want to publish findings which have already been published online and can be viewed for free. In reality, this seems not to be the case. Major publishing houses, such as Nature and Science, already accept preprinted manuscripts for submission, and Cell considers them on a case-by-case basis. For more preprint policies of academic journals, you can visit Wikipedia's page on "List of academic journals by preprint policy."

A third worry is that an excess of poorly executed, non-validated, low-impact papers will flood the internet and lead to a downturn in the quality of available material. However, if bioRxiv follows the trajectory of arXiv, then this worry is largely unfounded. arXiv does not have an overabundance of poor papers, since a bad paper can still have a negative impact on a researcher’s career. Thus, there is the same need to be rigorous in a preprint. It is safe to assume that researchers in biological sciences will act likewise.
Moreover, peer review is not without its faults. There are many instances where poor studies slip through the cracks, or worse, the data is fabricated and the paper may not be retracted for a long time to come. Peer review alone does not protect researchers from these worries and can still lead to a low-quality publication. Scientists must always have a critical eye when reading an article, whether it is a preprint or a publication in Nature.

There are still other concerns to sort out, but the growing movement to publish preprints, spurred on by Accelerating Science and Publication in biology (ASAPbio), is geared toward communicating results in the life sciences more quickly. Data is most useful when shared with colleagues, and researchers now have the opportunity to make their data public without delay. We cannot disregard the importance of journals, which have for a long time now been the chief means of distributing scientific and scholarly information. However, one’s progress up the academic ladder has become too intimately tied to publication record.

In fact, this situation originated from journals wanting to be more selective—artificially so—when accepting papers. In 1974, when Cell was started at MIT, the prevailing practice was to submit short articles to the journal that matched your subject area. If your manuscript passed peer review, it was printed. However, the chief editor at Cell decided to accept far fewer papers than were submitted to the journal. Instead, he recruited authors to publish extensive data spanning years of research to answer ‘big’ questions. Other journals, like Nature and Science, soon followed suit, and thus began the competition that determines not only prestige, but also drives the ‘hot’ topics to study, and even shapes the length you will spend in a PhD program.¹²

Ultimately, though, in this era of advanced technology, there is no reason that communicating findings should take months or years. While peer review is still a valuable process, comments provided from the preprint can enhance the review process, and make the final manuscript even better. Preprints are not necessarily a replacement for journals but rather an addition which might help level the playing field for those trying to start an academic career or, perhaps, graduate. We can also hope that by supporting ASAPbio’s preprint movement a trend will come about where scientists’ judge each other’s work based on the content of the paper instead of where it appears.

Alia Peselis is a 5th year PhD candidate in Alexander Serganov’s lab studying how noncoding RNAs control inflammation. When not in lab, you can find her baking cakes and playing piano.
By Kristen D’Elia

Mental illness is one of the most difficult categories of disease to diagnose and treat due to the brain’s immense complexity. It is even tough to study mental illness since it is hard, if not impossible, to model most of these diseases in animals. How, then, can we discover new underlying reasons for disease and new therapeutic targets? Scientists can look to simple, but physiologically relevant, animal models to better understand the basic elements of complex processes involved in disease.

An *elife* paper by Sackler graduate student, Kara Zang, touts a model many would be unlikely to think of as a hope to understanding a bit more about psychiatric disorders and their treatments: the nematode or *C. elegans*. While not addressing any specific disorder, Kara’s research, which was published in May, focuses on uncovering key elements in the regulation of the release of a neuromodulator important to mental function, serotonin.

Neuromodulators are long-lasting and wide-spread chemical signals that affect the nervous system. They have very important roles in regulating many bodily functions. Serotonin is a vital neuromodulator required for basic physiological processes such as thermoregulation and respiration, in addition to sleeping, eating, digestion, motor skills and emotional regulation.

Serotonin is the target of some medicines used to treat psychiatric illnesses, as it is known that higher levels of this neuromodulator often reduces depression and regulates anxiety. Some medications, such as the selective serotonin reuptake inhibitors (SSRIs) used to treat depression and anxiety, broadly increase the quantity of serotonin in the brain by blocking its reabsorption at the synapses of neurons. This method of gross change in serotonin levels often leads to undesirable side effects like weight gain, sexual dysfunction and sleeping problems.

New drugs that could target specific serotonergic neural circuits, instead of the entire system, could help alleviate some side effects. One issue preventing new targets from being discovered is that little is known about the actual process of serotonin release. Kara, who is doing her thesis work in the Ringstad lab, studies serotonin release required for *C. elegans* egg laying behavior in hopes of shedding some more light on this process.

In her recent paper, Kara found a specific type of ion channel, the T-type calcium channel, acts as a functional gate of inhibitory modulation of serotonin release. This means that this channel’s properties may dictate how much inhibitory signal regulates serotonin-releasing neurons.

Using a mutant screen, Kara discovered a point mutation in the *cca-1* gene altered the voltage dependency of this channel. The mutation changed the channel to allow ion flow at more hyperpolarized, or lower, voltages than normal. While this mutation did little to affect behavior in otherwise wild type animals (*cca-1* mutant), it restored normal egg laying function in animals with increased serotonergic inhibition. This work points to the T-type calcium channel as an important regulator in serotonin dependent behavior.

While the behavior in the *cca-1* mutant was the same as wild type, the calcium activity of the serotonergic neurons between these two genotypes differed.

Importantly, these findings may lead to new directions in serotonergic release research in vertebrates. Vertebrates have three types of T-type calcium channels, which are present in many important nervous system circuits. Interestingly, genetic studies in humans have shown variations of T-type calcium channels are associated with neurological and psychiatric disorders such as epilepsy, autism spectrum disorder and neuropathic pain. In mouse studies, there has also been confirmation that these channels are essential for important circuits in the brain.

What if the T-type calcium channel is a potential source of serotonergic dysregulation in these disorders? If so, could we use it as a target for better and more personalized medicines? In the paper, Kara discusses the possibility that these findings could point to T-type calcium channels as potential therapeutic targets for psychiatric disorders known to involve defects in neuromodulation.

By altering the voltage dependency of the channel, it might be possible to change the dynamics of inhibition within the circuits themselves. In addition, there could be hope for more targeted circuit specificity with treatments since certain types of T-type channels are present in different circuits.

These findings are especially exciting because they reveal potential new directions for understanding both basic neuronal activity and circuit functioning, as well as, translational applications. Kara will defend her thesis soon and is currently interviewing for post-doctoral positions. Good luck, Kara!
DESIGNING YOUR GRAD
STUDENT AND POST DOC

One student reveals how taking NYU’s Handel Class, a professional coaching class, changed the course of her personal and graduate life

By Lea Lough

I remember sitting in my foundations class feeling like an idiot. How could I have taken years of chemistry classes and suddenly struggle with biology? Things didn’t get any better when I struggled to find a lab. I left my first rotation after two weeks and both my second and third rotations informed me that they didn’t have funding to take me. I wasn’t happy with how things were turning out and with the person that I was becoming. I felt like I had no control over my life and I was talking to my family about dropping out. While at my lowest point, I knew that I had nothing to lose because part of me thought that I wasn’t going to find a lab, so I decided to embark on a personal journey that took me to NYU’s Handel Class. The Handel Class became my turning point and I wouldn’t be getting ready to finish my last experimental aim if it wasn’t for the tools and coaching with which the class provided me.

My path began when I came across an email from Sackler titled, “Designing Your Grad Student and Post Doc experience.” I was intrigued and decided to attend the class. During the first session, I met the course instructor, Gaby Jordan, an ex-lawyer and the Principal of the Education Division of the Handel Group, an executive coaching and training company. She proceeded to describe how she had teamed with Professor Wendy Suzuki to develop the Empowering Women in Science (EWINS) Explorations floor in the Palladium Dorm at NYU in 2009. Eventually this evolved into offering professional coaching classes for graduate students, postdocs and faculty members at NYU. NYU interactive with assignments between sessions. Each class is led by homework discussions along with new material being covered. During the discussions, we get to see what works and what doesn’t work for other people, which in itself is a learning opportunity. In addition to this, we are assigned coaches to hold one-on-ones through the process. I personally like my weekly calls with my coach. We talk once a week for an hour and we work on specific areas that I want to improve.

The real work begins during the first assignment. The assignment is to investigate, rate and design 12 areas of our life. Talk about a wake up call. If you’ve been avoiding anything, then this is where it all comes out. I wasn’t surprised when I finished the assignment and realized that I had a lot of work to do. During the course of the class we learned about the Handel Method, where we identify our personal excuses, traits, thoughts and inner dialogues that are holding us back from meeting our goals. We then focus on specific goals and follow a promise, consequence and accountability format to accomplish our goals. The goal of the Handel Method is to build our personal integrity and to develop character traits to reach our vision for each area of our life.

Another large component of the class are hard conversations. We are provided with a specific format to allow for a successful conversation. During the class, students have hard conversation with friends, family members, lab members and their PIs. Due to the coaching and strategies provided, we turn
those hard conversations into successful and fruitful conversations. Specifically, a lot of the dreaded conversations with PIs result in new agreed upon boundaries and clear communication that include actionable steps moving forward.

As a two-year veteran of the Handel Class, I no longer recognize the person that I was when I started graduate school. I went from almost dropping out because I felt like things were out of my control to completely changing my inner dialogue, getting awards, endeavoring into entrepreneurship, traveling, having great relationships and overall enjoying my time at Sackler. There are still plenty of things that I want to accomplish and now I have these sets of tools to help me. Unfortunately, I was informed that the funding for the Handel Class ended. As one of many advocates of the class, it would be a shame if other students couldn’t have the same opportunity that I had. All of the students that have previously taken the class have moved on to enjoy a more balanced work-life experience. I hope Sackler reconsiders ending this class because this was an exceptional class during a challenging and distressing time of graduate school.

Several of my fellow Handel Group alumni have shared their thoughts on the class.

Anonymous, Graduate Student

“I was having a hard time dealing with my PI and some lab members. The class taught me to effectively hold conversations with these individuals. A few months later, the environment and our work relationships improved. The learning in class was structured, which as a scientist, I appreciated greatly.”

Joshi Frenster, Graduate Student

“The Handel Group sessions have helped me analyze in depth what I want to achieve, what keeps me from getting there (on a personal and professional level), and how I can systematically tackle those issues. I think it’s important that people understand that this course is neither ‘seeing a shrink’ for messed up people, nor is it ‘just another course telling you about the 10 steps to success.’ It’s a more holistic approach. It’s very personal! But it focuses on your professional progress. Personally, the Handel Group sessions have helped me develop a clearer vision of what I want, in life and science, helped me get closer to it, and left me with a set of very effective tools that I can apply for myself in the future. All in all, it helped me get a better grip of my life.”

Tandon PhD, Graduate

“The Handel Class provides tools to help define and accomplish your life goals. The course instructor, Gaby, provides no-nonsense feedback, identifying participant excuses that can be overcome with shifts in mindset. An added benefit of the course is a regular opportunity to reconnect with your dreams among fellow STEM postdocs and PhD students, which is motivating in itself.”

Marco Tisano, Postdoc

“Under the high pressure of an extremely competitive work environment such as that of the life sciences, it is very easy to lose track of one’s needs and values. Most of the time, it is very easy to think that happiness is second place to our careers. While trying to stay afloat, I found the invitation to take part to the “Designing your Grad and Post Grad Experience” seminars, held by leaders and coaches of the Handel Group. It was a lovely surprise to learn that the content of the classes consisted of actual real life strategies that help people to first achieve happiness and then take that found success and serenity and apply it to our professional experience. A lot is asked of us, as scientists, and I strongly believe that we should be given the best set of tools to cope with it and find happiness within our choices. The Handel Group has proven to be of great help for me and has set me on the right track. I feel like repeating the experience again would be pivotal, and I would be extremely sad if our community would let go of such a great opportunity for its members.”

Anneke Geyzen, Postdoc

“The course provided me with useful tools to make important decisions I’d been putting on hold for a while. It has enabled me to make a career switch I’m thrilled about and clean up several of my professional relationships. Thanks to the Handel Method, I believe in what I’m capable of.”

Lea Lough is a fifth year PhD candidate in Timothy Cardozo’s lab studying the role of GCN2 in the integrated stress response. When not in lab or lifting weights, you can find her making last minute trips and eating delicious food.
By Kristen D’Elia

Starting graduate school comes with many lifestyle changes. For some, this might include a change in city. For others, it might be their first time living in a large city at all. New York has so much to offer in terms of entertainment, good food, and Instagram-worthy sites, but there is one color it severely lacks in certain areas: green. Especially around Kips Bay and the medical center, there are very few green spaces to relax. Having always lived in the suburbs, I often find myself wishing for less gray and more green since I feel healthier and more relaxed when I spend a bit of time around greenery. It is important for me to seek out green spaces on the weekend to spend time in nature or at least a place that feels less like the concrete jungle I reside in Monday through Friday. There are many resources online to find green spaces in and around NYC, but I have created a short list here of some favorites for those new to the city this summer.

Hudson River Park: This park stretches for miles up the west side of Manhattan with gorgeous views of the Hudson especially towards the north. It has a path that stretches for over 10 miles perfect for a run or a bike ride. Don’t have a bike? You can rent one for the day from one of the site seeing companies nearby or take a Citi-bike for a quick spin.

Prospect Park: Designed to rival Manhattan’s Central Park, this park has some amazing spaces for outdoor activities. With many sporting fields, grill areas, and expansive lawns, many people use the space to celebrate events or come to see free performances. My favorite thing to do here is lay out in a quiet spot overlooking the large lake. Also, check out the nearby Brooklyn Botanical Gardens for some more beautiful greenery and flowers!
Roosevelt Island: Although not a park in itself, Roosevelt Island has two large green spaces at each end of it. One includes an FDR memorial and the other has a small lighthouse. Both have views of Manhattan and Queens plus plenty of space to relax or have a picnic. You can get to this island by the F train or take a trip on the tramway that is suspended next to the 59th street Queensboro Bridge with great views of the city and the East River from above!

Brooklyn Bridge Park: I visited this park for the first time this summer and was pleasantly surprised by the nice scenery and relatively small crowd. Take the ferry there from 34th street for a really nice trip and a break from the hot subway. Nestled in DUMBO, this park has great views of the Brooklyn and Manhattan bridges and lower Manhattan including the One World Trade Center. There are many public events and activities here during the summer including outdoor movie nights!

The High Line: One most people have heard of built atop old freight train tracks, this park has a lot of character. Only a few meters wide, but 1.5 miles long, this is the perfect park to take a walk along to see a bit of Manhattan’s west side. It stretches from 34th street all the way down to Chelsea. Though it can get very crowded during beautiful weather, it is also be a cool place to visit at night.

Central Park: Of course, a need-to-mention park, Central Park is probably the most well known of NYC. As the largest in Manhattan and the 5th largest in the five boroughs, crowds flock here during the summer. Even with many visitors, there is plenty of room to lounge about and lots of quiet places to enjoy the greenery outside of the main lawns. I particularly like the sailboat pond, the conservatory garden, and taking a bike ride around the circular road within the park.

Hudson Valley: Still feel like you need more nature away from all the traffic noise? Try taking the Metro North out of NYC up to the many parks and hiking trails in the Hudson Valley! There are some amazing views just 30-90 minutes away by train. I loved my recent hike along the easy trails at Arden Point, but there are many more to choose from.

This is just a short list of some of my favorite green spaces a short trip from the medical center. Other NYC green spaces that are on my list to visit include Battery Park, the waterfront in Long Island City, Governor’s Island, Riverside Park, Pelham Bay Park, McCarren Park, and Fort Green Park. While it doesn’t compare to the ample greenery of the suburbs, NYC has some spectacular green spaces to explore!

Kristen D’Elia is a 3rd year PhD student in the labs of Jeremy Dasen and David Schoppik studying neural circuit properties of vertebrate locomotion. Outside of the lab, she loves photo documenting her adventures around and outside NYC and is on an infinite quest to find the next best dessert.
THINGS TO DO IN NYC

A guide to exploring the city from a fellow Sackler student

By Jessica Chukwu

Don't let New York intimidate you! Grab a fellow classmate or two and embark on an adventure. From museums to concerts to all-you-can-eat sushi, there is always something to do. Check out www.nycgo.com and sign up for the newsletter to stay up to date on all the happenings. To help you get started, here are a few of my favorite places.

FOOD

Eataly
Massive Italian marketplace to spend an entire day getting lost in, literally and figuratively! Flatiron, 200 5th Ave.

Smorgasburg
Largest open-air food market in America! Located in Williamsburg on Saturday and Prospect Park on Sunday. www.smorgasburg.com

Koreatown (aka K-town)
A one-stop shop for delicious Korean groceries and fare. Located in the mid 30's between 5th/6th avenue.

Studio Square
Open-air beer garden in Queens. They play most international sporting events! Queens, 33-33 36th St.

Tipsy Scoops
Artisanal ice cream with a kick! My favorite: cake batter vodka martini. Kips Bay, 217 E. 26th St.

ACTIVITES

The Gutter
Cheap bowling in Brooklyn. Only a 10-minute walk from the East River Ferry stop in Williamsburg! Williamsburg, 200 N. 14th St.

Museum of Modern Art
FREE with NYU ID. Check NYU Box Office website for full list of free and discounted museums. Theater District, 11 W. 53rd St.

The Cloisters
Museum in Upper Manhattan specializing in European medieval architecture, sculpture and decorative arts. Fort Tyron Park, 99 Margaret Corbin Dr

Bronx Zoo
Visit the largest metropolitan zoo in the United States! Then, make it a day and check out the New York Botanical Gardens right next door. Bronx, 2300 Southern Blvd.

TRANSPORTATION

Citi Bike
A fun, affordable, convenient way to get around the city. Single- and three-day passes and annual memberships are available.

East River Ferry
The 34th St. dock is conveniently located five minutes from NYU Langone hospital. In the summer, you can even take a ferry to Far Rockaway beach! www.ferry.nyc

NYU Shuttle
NYU shuttle buses run multiple routes year-round. Download the app and follow the buses in real-time! http://nyu.transloc.com

PARKS

Central Park
Shakespeare in the park, ice skating and picnicking. www.centralpark.com

Prospect Park
Free movies, summer concerts and weekend farmer's markets. www.prospectpark.org

Brooklyn Botanic Garden
Right next to Prospect Park! www.bbg.org

High Line
1.5-mile long linear park on the west side of Manhattan constructed on old train tracks. www.thehighline.org

Walk Brooklyn Bridge
Take a scenic walk across one of the oldest bridges in the US. Plenty to do on both ends!

ENTERTAINMENT

NYU Box Office
Visit the box office or website for off-Broadway shows, discounted movie tickets and campus events. https://www.nyu.edu/life/

AMC Movie Theatres
After you purchase your discounted tickets, head to AMC on 32nd and 2nd Ave. One of the best IMAX theatres in the city!

Comedy Cellar
Manhattan comedy club with performances from top NY comedians like Louie CK, Marc

Jessica Chukwu is a 5th year PhD candidate in Xiangpeng Kong’s lab using crystallography and antibody engineering to develop an immunotherapy for Alzheimer’s Disease. Outside of lab, she enjoys local events around her Brooklyn neighborhood, extreme sports and small batch ice cream.
NEED A PLACE TO STUDY?

A floor by floor tour of Bobst

By Kami Dimitrova

Once upon a time, there was a rich man named “Elmer Holmes Bobst.” On a sunny day sometime in the 1970s, he felt generous and decided to give NYU $6 million dollars to build our beloved library. He hired two famous architects, Philip Johnson and Richard Foster, to do the job. Why they made the floor a nauseating checkerboard pattern only they know.

Something about our 12-story library is intimidating, especially as a freshman. Could it be its tall stature? Its sophisticated collection of books? Or its studious environment? Well whatever the case may be, we realized that a little guidance from your NYU Local team would be useful. So here’s a quick floor-to-floor guide of good study spots, cozy corners for naps, and quick and easy access to food.

The Lobby — It bears interesting parentheses-shaped couches that are good for cat naps or meetings. It also has a random art gallery with portraits and some artifacts in glass casings if you’re ever in the mood for a mini-museum experience.

LL1 (Lower Level 1) — Tis the more social of the LL’s, considering it houses the library’s most valued possession: the vending machines. Mid-night snacks and late-night chats are what this floor is all about.

LL2 — This is where [NYU] students are generally caught sleeping. It’s awesome. Both LLs are open 24 hours for students wanting to stay late. Photo copy machines and the reference center are at your convenience.

2nd Floor — This floor houses the “Avory Fisher Center for Music and Media.” You can rent movies or musical scores from any Broadway show ever created. Tisch kids, get on it.

3rd Floor — It has books. And desks. It’s a pretty normal floor.

4th-5th Floors — Can you say, SWANKY? These newly renovated floors have comfy chairs, a plethora of power plugs, and brand new desks: the key to any nerd’s heart.

6th—7th Floors — These are also relatively normal floors. The 7th floor has special desks specifically to plug in your laptop (unlike most desks, where plugs are on the floor and often used by everyone else charging their computer).

8th Floor — ALERT: The coziest couches are located on this floor. If you ever want to experience the most joyous nap of your entire life, you best get up to the 8th floor. STAT. It has all the components for a proper dozing den.

9th—12th Floors — You’ll have to distinguish these floors on your own. The 12th floor does have a mighty fine view though.

*Remember, each floor has shelves upon shelves of books. There is a map posted by the elevators on each floor to help you locate books you are looking for. And if you can’t find a place to sit, you haven’t search hard enough. Bobst is huge so don’t be afraid to look around!

Originally posted on NYU Local: https://nyulocal.com/a-floor-by-floor-tour-of-bobst-c64f3af419b0

Rosenberg EC, Louk J, Conway E, Devinsky O, Friedman D. Quality of Life of Childhood Epilepsy (QOLCE) in pediatric patients enrolled in a prospective, open-label clinical study with cannabidiol (CBD). Epilepsia. 2017.

Donato, V, Bonora, M, Simoneschi, D,

*authors contributed to work equally

Featured upcoming event:

What Can You Be With A PhD? A Science and Technology Focused Career Convention is a unique opportunity to connect the private and public sector, industry and academe with the rising generation of scientists and engineers who will become tomorrow’s leaders and innovators.

What Can You Be with a PhD?

A Science and Technology Focused Career Convention

November 4-5, 2017

Registration will be available on September 18, 2017.
AWARDS & HONORS

Kate Allaway, NIH NRSA

Alessandro Baletti, Genetics Society of America
Early Career Scientist Co-Chair

Alessandro Baletti, Genetics Society of America
Board of Directors - Trainee Liaison

Rachel Bandler, NIH NRSA

Matthew Keller, NIH NRSA

Chelsea Maniscalco, GSA Poster Prize,
Development at the 21st International C. elegans Conference

Alex Penev, NIH NRSA

Phillip Thomas, HHMI Gilliam Fellowship

GRADUATION DEADLINES

September 2017 Deadlines

Register on Albert (home.nyu.edu) from: February 6, 2017 to June 16, 2017

Preliminary Thesis due: August 4, 2017

Final Thesis due: September 15, 2017

Resources for thesis preparation and the graduation checklist are available on our student community thesis defenses and graduation page, which you can access using your Kerberos ID.

STAFF

Editor
Cynthia Chen

Staff Advisor
Lisabeth Greene

Contributing Writers
Jessica Chukwu
Kristen D’Elia
Matthew Keller
Alexandria Hammond
Lea Lough
Alla Peselis