Features:

SEEING IS BELIEVING
Why we need the new Marie M. Daly Speaker Series

A DAY IN THE LIFE ...
Three students describe a typical day working with their model organisms

THE MIRACLE AT P.S. 002 MEYER LONDON
The story of the Sackler kickball team
We would like to highlight a few changes in the graduate program initiated this past year...

For one, as many of you know, this marks the first admissions season without the GRE requirement for our PhD application! This decision was made in response to numerous studies showing no correlation between GRE scores and graduate student success. We join many life science PhD programs that no longer require it, and we look forward to more schools following suit. We have been advertising this with new swag (right photo) and are receiving positive reactions from potential applicants at recruitment events. Our application numbers seem to be increased, perhaps due to this change. Hopefully, more schools will drop this requirement to encourage students of all backgrounds and economic status to apply to PhD programs.

This year, three new people joined our Sackler team. Ashton Murray, MDiv, joined in March as the program manager of diversity and inclusion. In his time here so far, he has hosted numerous social and programming events to continue to build a culture of inclusion, intercultural engagement, and equity here at the medical center. Tim Requarth, PhD, joined in May as lecturer in science & writing and is working to enhance our academic curriculum. Tim is also a resource for all students working on grants, manuscripts, theses, and presentations. For example, this fall, he implemented a workshop for 1st and 2nd year students applying to the National Science Foundation (NSF) Graduate Research Fellowship Program. His workshop consisted of group sessions followed by meetings to provide one-on-one feedback. Of the 16 students that participated in the workshop, all applied. We look forward to hearing back from the NSF regarding their funding. Tim is planning workshops for the Spring, focused on paper writing, thesis writing, F30/F31 applications, and communicating science to the public. Our most recent addition to the Sackler team is Sandra Squarcia, program manager of the Master’s in Biomedical Informatics program. Sandra joined our office in December, and we look forward to having her help. Our Master’s program, now in its third year, continues to expand. Ashton, Tim, and Sandra are all located in the Sackler Office in the Medical Science Building, Suite 228.

We understand that graduate school has its challenges. In coordination with the Medical School, we have launched a series of Listening Sessions, called “What’s on your mind?” These informal sessions are a place for students to raise concerns and discuss any challenges they face, both inside and outside of graduate school. Students can also meet with any of us individually or at the weekly coffees with Sackler or monthly dinners!

We are also excited to announce that we are planning a Sackler Alumni Event in 2020. While still in the brainstorming stage, this multi-day event will bring back PhD and MD/PhD alumni to tour the campus, meet with current students, participate in career panels, and network! We plan to send Save the Date cards in the Spring. If you are in contact with any alumni, please remind them to update their information by using this link, https://apply.sackler.med.nyu.edu/register/alumnitracking, so we can make sure to include them in the invitations!

As always, please let us know of ideas you may have for new initiatives. We welcome them all!

Naoko & Susanne
THE SACKLER ADMINISTRATION

You can find Dr. Naoko Tanese in the Skirball 3rd Floor Administration area

Ashton Murray, MDiv
Program Manager, Diversity and Inclusion

Heather Petrucci, MSc
Program Manager, Medical Scientist Training Program (MSTP)

Tim Requarth, PhD
Lecturer in Science and Writing, Assistant Director, Academic Programs

Lisabeth Greene, MA
Assistant Director, Graduate Student Services

Jessica Dong, MA
Program Manager, PhD Program

Kelly Ruggles, PhD
Director, Academic Programs

Amanda Tufekcier
Program Manager, SURP

The rest of the Sackler Administration can be found in MSB 228
We can’t believe it, but 2018 is already coming to a close and the holidays are upon us! This year we’ve maintained some favorite events and added some new ones for everyone to enjoy. As student council, we’re always thrilled when our community comes together for relaxation and fun. After the class of 2018 arrived, we hosted several orientation events, including a game night and a mix and move, where new students interacted with current ones as we hopped from bar to bar. We closed out Hispanic Heritage month by dancing our butts off with two-time world champion Salsa dancer and fellow PhD student, Bruno Rodriguez. Then we discovered that we have some pumpkin carving experts in our community as we carved pumpkins and shared spooky treats and apple cider. Finally, we ended October with a Halloween party where students came in some wonderfully creative costumes, ranging from Harley Quinn to a scarecrow and scared crow duo. All of these events were of course supplemented by our monthly happy hours where students got to meet and catch up.

We recently met with your class liaisons to hear about what students across different class years would like to see in the coming months and year. They provided some excellent ideas, from a trivia night with prizes to a holiday party. Inspired by a self-made event that was hosted by some students last year, we are happy to announce we will be having a holiday party for the community as a whole and hope that people will join us in engage in a gift exchange, “white elephant” style. Hopefully this becomes a Sackler tradition that we can look forward to every year.

In the coming year you can expect the return of happy hours, welcoming interviewees, and spring formal. If you have other thoughts on events you’d like to see, please reach out and let us know. As always, we are here to help improve the graduate school experience for all! We hope that this coming year is filled with new discoveries and happiness for everyone at Sackler!

Best Wishes,

SSC 2018-2019
Of A Zebrafish Biologist
By Tuğba Çolak-Champollion

The first thing I do on a typical workday is check on fish crosses I set up the day before. These crosses consist of male and female fish which will hopefully provide me with hundreds of fertilized eggs. Getting a good zebrafish egg lay is essential for my graduate work as I study collective cell migration using zebrafish embryos.

Adult zebrafish (Danio rerio) are freshwater fish native to Southeast Asia. As adults, they are just over an inch long, but as embryos they are only a few millimeters in length. They have beautiful black stripes along their silvery body.

Due to its many advantageous traits for biomedical research, the zebrafish has been a prominent vertebrate model organism since the 1990s. Because we can easily visualize internal structures and fluorescent labels in transparent embryos, they are excellent and easy to use for microscopy.

The zebrafish community has developed a variety of genetic tools such as mutants and fluorescent reporter lines of countless genes. Zebrafish are vertebrates like mice but are smaller and cheaper to house. Our zebrafish facility, which consists of three rooms, hosts about 50,000 fish.

My time at work is divided between the fish facility and our main lab, where we have our benches and desks. The two locations are on separate floors. We go up and down the stairs many times during the day, which provides a good work out. No need to go to the gym, just climb the stairs in doubles, and there you have your daily lunges.

The fish facility is also the best place to be on cold, dry winter days. Zebrafish originate in a warm climate, so the facility is kept at 28°C (82.4°F). The sounds of the constant water flow into the hundreds of tanks give the room a meditative atmosphere.

In the afternoon, we prepare for the next day’s experiments by setting up fish crosses. We place the couples in a two-compartment crossing cage, where they can see and smell each other but cannot touch. At 11 PM the lights automatically turn off. In the morning at 9 AM, they turn on again. We then remove the divider in the crossing cage, and the fish begin to mate.

After they chase each other for a while, the female releases eggs into the water as the male attempts to fertilize them. Sometimes, the romance does not work out and they start fighting. You must be quick to separate them for your sanity and the safety of your fish.

Other times, they just don’t want to lay eggs. Some of us are a bit superstitious and try all kinds of tricks even though we know they haven’t worked in the past. To name a few: directing a flashlight on the pair, imitating rain drops by sprinkling water, and tilting the tank to create the feeling of a ramp in a river. On lucky days, we get hundreds of fertilized eggs for our experiments.

Once we collect the eggs, we take them to the procedure room within the facility, where we have fluorescent and dissecting microscopes, injection and transplantation equipment, and incubators for the embryos. The possibilities for experiments are endless. We manipulate, sort, or simply raise our embryos.

In the procedure room, the experiment I do the most frequently is mosaic analysis. I transplant cells from donor embryos into host embryos when they are only four to five hours old. Once I get the desired chimeric embryos in the late afternoon, I take them to the confocal microscope next to our main lab. Here, if I am lucky, I will capture a beautiful and informative image of these embryos and end the day happily.

Tuğba Çolak-Champollion is a graduate student in Holger Knaut’s lab studying the mechanisms of collective cell migration in zebrafish embryos.

Tuğba enjoys yoga and hiking in her free time.
In the Lehmann lab, the fly room is the family breakfast table. In the morning, after we hang up our coats and drink our coffee, we sit next to our microscopes. The primary weapon of a fruit fly biologist, much like a master painter, is the humble paintbrush. Instead of setting down strokes of paint, we use them to gently brush our flies, move them, rotate them, so that they are unharmed by our prodding. Under the microscope, we can see if our flies have curly wings or straight, red eyes or white, bristled hairs or not. These markers are a way of seeing with our own eyes whether our flies have the genes we want.

It’s tedious work, and so conversation in the fly room generally turns very easily to gossip and gab. How are the kids? What are your weekend plans? What did you think of yesterday’s seminar? In the morning, it’s difficult to focus on bristles and genetics, and sometimes I get distracted watching larvae – maggots to some, precious children to me – burrow deep into the moistened food, their gut working visibly underneath their translucent skin as they eat their way into metamorphosis.

The fruit fly genome is a geneticist’s sandbox. There are so many tools and toys to choose from that allow us to fine tune our molecular manipulations. Because fruit flies breed so quickly, we can generate new stocks in a matter of weeks, and perform our experiments with a speed that outpaces other model organism systems. My experiments involve early embryogenesis – I can collect hundreds of embryos in a few hours, and have them stained and on a microscope slide by the end of the week. By far, my favorite part of the experiment pipeline is sitting down at the confocal microscope and taking beautiful images of my embryos.

I get a lot of strange looks on the subway as a fruit fly biologist. Talking with colleagues about having to go into lab to collect virgins for my experiments tends to attract attention. Once I told a friend that I had been dissecting testes and ovaries for my rotation project, and I saw a lady with an overfull grocery bag subtly try to inch away from me on the 6 train. Getting strange looks from other New Yorkers is part of the fruit fly biology tradition. The first ever fly room was set up here in New York City by a man named Thomas Hunt Morgan in 1909. His study of chromosomes and heredity came at a time when the field of genetics was still not fully established, and the mechanism of heredity was not fully understood. For his work in fruit flies, he received the Nobel Prize, the first ever in genetics. More than one hundred years later, we still have so many unanswered questions about fruit flies and what their genetics can tell us about the fundamental mechanisms of biology. Despite so many advances in technology, it’s funny to remember that the fly room itself has not changed much. Sure, we don’t have bunches of bananas hanging from shelves anymore – unless one of the lab technicians gets hungry during their dissections – but we still have vials of flies set up in rows on the shelves, and microscopes set up to look for visible genetic markers on our fruit flies.

Before going home for the day, my lab gathers in the fly room again, to collect all the virgins that have newly hatched from their pupal cases. We want to collect them before they start storing sperm from male flies that we don’t want them to mate with (saying this out loud on the subway is also a sure way to get strange looks). Sometimes the radio will be on, the NPR host telling us the news, all the things we have missed while we’ve been doing our experiments in lab. Through the window, the Empire State Building will be lit up with bright colors. When we’re done tending to our flies, we’ll put away our paintbrushes and head home.

Mariyah Saiduddin is a graduate student in the Lehmann lab studying primordial germ cells in early embryos. When she’s not zoning out looking at larvae, she likes to learn about New York City’s rich history.
The day starts when I swipe through the doors on the fourth floor of the Skirball Institute. A few, often sleepy, “hello’s” are exchanged as I make my way to the Nance lab at the very end of the hall. Coffee is always brewing in the coffee pot in the hallway as I get to my desk. After I drop my bag at my desk and greet my bay mates, I look over my planner and the experiments that I want to do that day. But before I jump straight in, I always make sure that the different C. elegans strains that I will need are well fed.

These worms live in small petri dishes filled with agar and seeded with bacteria for them to eat. These plates are stacked into short towers on my bench and I comb through them, making sure that the strains I need have not eaten their plates completely clean.

In my short time working with C. elegans, I quickly learned the importance of checking on and maintaining my strains daily. With their short life-cycle and high rate of reproduction, I am able to perform experiments quickly, often within only a few days of conceiving them. The downside is that, because the worms can multiply so quickly, they will eat all of the food on the plate and enter a starved state if I don’t pay attention. However, this minor inconvenience is a simple trade-off for some of the C. elegans traits that make them such a fantastic model organism.

In the 1960’s, Sydney Brenner first proposed to use C. elegans as a model to study neuronal development and behavior. He recognized that these little nematodes have many advantageous traits that make them a powerful model for studies in development, neuroscience, and cell biology. They are small (adults reaching only about a millimeter in length), anatomically simple, and have optically clear bodies. They are also easy to cultivate and maintain as they usually exist as hermaphrodites and reproduce by self-fertilization.

Recent advancements have further strengthened their status as a model organism. They have a relatively small, simple genome. In fact, C. elegans was the first multicellular organism to have its entire genome sequenced in 1998. There now exist many tools for genetic manipulation and engineering in the worm. Additionally, its simple neuronal system has also allowed for it to become the first animal to have the wiring of its entire nervous system completely mapped.

During the average day of research, C. elegans biologists get to take advantage of many of these qualities.

The relatively fast pace of C. elegans research means that the lab is often bustling with activity. Whether it be cloning and tool building, performing micro-injections to make transgenic animals, or imaging animals, there is always something to do.

This doesn’t mean that everyone is focused on their own work to the point of being closed off to everyone else; however, the atmosphere of the lab is very open and collaborative. Whenever I need to use a technique that is new to me or need to talk something over, I’m always able to get the help I need from my lab mates.

When all of the day’s experiments are done, I make sure that all of my worm strains are accounted for and growing at the right temperature before I leave, rearranging and re-stacking the plates. I organize my bench, hang up my pipettes on their holder and make sure that the area around the microscope on my bench is free of clutter. Once space is cleared up and ready for experiments in the morning, I pack up my things, mark my planner for the next day’s experiments, and head home for the evening.

Of A C. elegans Biologist
By Lauren Meyer
SEEING IS BELIEVING

Why we need the Marie M. Daly Speaker Series

By Phillip Thomas

As graduate students, we are constantly faced with the concept that seeing is believing. You can spend months reading papers and formulating an elegant hypothesis. But, at the end of the day, what you see in the data is what you believe.

This theme runs deep in the veins of all scientists. However, for students of color, success mandates that we reject this fundamental scientific principle. While the success rate for aspiring tenure track faculty members at large is a bleak 12%, for underrepresented minorities (URM), that number is less than 2% [1, 2]. To make matters worse, URM faculty members receive less than 5% of all NIH R01 grants [3].

For URM students faced with this data, we would have to accept that becoming a successful tenure track professor is almost impossible. Therefore, it is unfortunate, but unsurprising, that lecture series around the medical center often lack URM faculty members.

Faced with these odds, any URM faculty member has overcome extraordinary hurdles. Starting this winter, the accomplishments of these extraordinary individuals will be highlighted with the Marie M. Daly Speaker Series. The namesake scientist, Dr. Marie M. Daly, embodied this extraordinary example.

Dr. Daly was the first African American woman to receive a Ph.D. in chemistry. She accomplished this feat in 1947, a time when higher education was not easily accessible for minorities in this country.

She went on to earn a position in the professorate at Albert Einstein College of Medicine, where she ran a successful lab for many years. Dr. Daly dedicated her life to pursuing scientific discoveries at the highest level, but she also made it a personal goal to help diversify the landscape of the scientific workforce.

The Marie M. Daly Speaker series showcases something that the Sackler community has not experienced before. It is unique in its structure and has many characteristics our other speaker series are missing. First, the series only features URM scientists. Many graduate students, URM and otherwise, rarely get to see such speakers.

Additionally, there is a designated time for speakers to share the story of their rise to scientific success. We included this portion because, while students often hear speakers talk about their ground-breaking work, the life story behind the scientist is rarely discussed.

Finally, we will feature speakers from inside and outside of academia. In the challenging academic job market of today, students often must consider careers outside of academia. Taking this into account, we wanted to demonstrate a diversity of career possibilities as well as a diversity of speakers.

The planning committee behind the Marie M. Daly Speaker Series understands that if we are to build the next generation of URM scientists, we have to understand the barriers that URM students face. Seeing is believing- and while we cannot change the data, we can change what we showcase to students in the Sackler community.

Lena Lau grins with her expertly carved pumpkin!

First year students dress as four of the Fab Five from Queer Eye

Members of the Student Council hosting Happy Hour at Albion
SACKLER STUDENT COUNCIL EVENTS

Hispanic Heritage Month Dance Lesson
The immune system is made of a complex network of cells, tissues, and organs that protect us from invading organisms such as viruses, bacteria, fungi, and parasites. Another layer of protection from outside invaders lies in our microbiome made up of commensal organisms that signal to our immune system. These networks are complex, making them prone to malfunctions that may elicit an excessive immune response affecting surrounding healthy tissue.

In the event of an infection, the signaling networks of invading pathogens come in contact, not only with our host cells, but also with those of our microbiome, both of which will signal our immune system to start working.

However, in the event of improper signaling, our beneficial microbiota can be reprogrammed to instead cause the immune system to overreact, resulting in excess inflammation and disease.

Understanding these changes is exactly the work that Patty Martin, a graduate student in Dr. Ken Cadwell’s lab here at NYU, has decided to tackle. Her recent paper, published in *Nature Microbiology*, focuses on understanding the mechanisms that suppress hyperactivation of the innate immune system. Patty’s work centers around a key cellular pathway called autophagy.

Autophagy maintains homeostasis by degrading proteins of destroyed cell organelles to reuse for new cell formation. The proteins involved in autophagy are also able to sense foreign DNA or RNA and dampen inflammation by inhibiting immune activators such as type I interferon (IFN-I). Such a role is useful in preventing unwanted inflammation that may come as a result of spontaneous signaling by the microbiota.

In her study, Patty used mice deficient in the autophagy pathway to work out its role in causing gut inflammation. This work shows that in the absence of autophagy, upon bacterial infection or acute chemical injury, there is a lower bacterial burden as a result of IFN-I upregulation.

This might seem counterintuitive since we would like to think that absence of such a critical pathway would lead to worse outcomes. However, this is an indication of essential checkpoints placed on our immune system to avoid spontaneous and harmful responses.

Patty’s research also found that in this autophagy deficient state, IFN-I signaling is dependent on the commensal bacteria of the microbiota and recruits monocytes to help resolve infection. This supports the idea that autophagy proteins play a central role in balancing host defense and inflammation.

Much of the research on gut inflammation has been linked to dysregulation of host immune and microbiome signaling which causes excess inflammation and disease. In the pursuit of the cause, several mutations have been characterized that suppress autophagy. Patty’s research shows that this suppressed state supposedly has a beneficial role in increasing protection against acute infection.

However, the role of autophagy in gut inflammation may not be so simple. Research also demonstrates when mice with suppressed autophagy pathways are presented with persistent infections, they develop pathology similar to that of inflammatory bowel disease (IBD). Thus, more research must be done to understand the cost-benefit of a functional autophagy pathway in immunity.

Importantly, these discoveries will lead to therapeutic advancements for inflammatory and infection disease.
I'm standing on second base. The bases are loaded. We are down by two points. There are two outs. Seth Parker, a postdoc in the Kimmelman lab, steps up to the plate, and I'm thinking that the game is as good as over.

I had faith in Seth, but our little group of scientists had the most average kickball team around. At this point we had an even record, and I could see it coming: Seth would hit a pop fly, it would get caught, and that would be it.

The pitcher winds up and rolls Seth one of the slowest pitches I’ve ever seen, and immediately I relax from my runner’s position. The game should be over with this kick. To my surprise, Seth winds up and crushes the ball with the sheer confidence of Steph Curry when he puts up a deep three pointer.

The ball leaves his foot, flying like a rocket about to crack through the atmosphere, and then it happens. Everything slows down, and the ball is flying. It keeps climbing and climbing and climbing until it clears P.S. 002 Meyer London and that’s it.

By Phillip Thomas

The MIRACLE AT P.S. 002 MEYER LONDON

The story of the Sackler kickball team

Sackler Kickball wins on a walk-off grand slam.
The joy expressed by Lea Lough, Julia Derk, Seth, and myself as we round the bases to the rest of our teammates was nothing short of ecstatic. Julia yells, “This is the greatest moment of my life!” I couldn’t help but think of how far this kickball team exceeded my expectations. It was the playoff game, and Sackler Kickball faced off and won against the number one seed, Asphalt Kickers.

When I set off to initiate a Sackler Kickball team several months ago, there were several obstacles standing in my way. What scientist would take time away from the bench to spend a Tuesday night playing kickball? Who has even played kickball since elementary school? And, most importantly, would Sackler even agree to pay for this?

Against all odds, on October 9th, the Sackler kickball team took to the field for its first kickball game. Our first game was about as bad as a grad student’s first draft of their first paper. For one, we were scientists. And past that, some of us didn’t even know each other.

This was also my first attempt at a coaching position, and kickball strategy wasn’t at the forefront of my mind. We went on to lose that game, and the next, and the next. When someone asked how the season was going, I would sarcastically reply, “Our record is perfect. We played three games and lost three games.” But halfway through the season, things started to change.

During our fourth game, we played a pretty decent team and beat them handily with a final score of 18-8. I don’t know what it was about that game, but from there we didn’t look back. We started to communicate with each other. We were helping each other out. We started playing together like a collective unit. I put more effort into coaching strategy, changing up the batting line up and shuffling some people around on defense.

We kept our streak going in the next two games and finished the season 3-3. Somehow, this was good enough to make the playoffs. The playoffs would be a two game system in which the fourth seed (us) would face off against the number one seed in the first round. I knew that there was no way we would beat an undefeated number one seed.

The game was a hard fought battle, but it ended with that walk-off grand slam. Sackler kickball had channeled its inner UMBC (University of Maryland - Baltimore County) and knocked off the number one seed to make the championship game. As a young poet from Toronto put it, “Started from the bottom, and now we here.”

Phillip Thomas is a graduate student in the Laboratory of Susan Logan. His thesis work focuses on understanding the role of an androgen receptor co-factor in Male infertility. Phillip’s overall passion is to help reshape the makeup of the scientific workforce so that it will truly resemble a diverse and inclusive environment.
THE SACKLER MESSENGER NEEDS YOU!

What is the Messenger?
The Sackler Messenger is a student newsletter that is written, edited, and produced by Sackler graduate students.

Who reads it?
Primarily Sackler students, faculty, and staff, but all issues are available for anyone to read through the Sackler website (link).

How can I contribute?
Pitch an article idea. Do an interview. Write up a story. Take pictures. Help with editing and layout.

Why should I get involved?
Advertise your new research, club, etc. Improve your writing skills with peer feedback. Produce a piece you can add to a science communication portfolio. Help us diversify the student voices in the Messenger.

Want to get involved with a future issue?
Have feedback or an idea about how we can improve?

CONTACT US:
Kristen D’Elia Editor kristen.delia@nyulangone.org
Lisabeth Greene Staff Advisor lisabeth.greene@nyulangone.org

STUDENT PUBLICATIONS

AWARDS & HONORS

Kathryn Allaway, NIH NRSA
Kameron Azarm, NIH NRSA
Rachel Bandler, NIH NRSA
Luendreo Barbosa, HHMI Gilliam Fellowship
Lauren Bayer Horowitz, NIH NRSA
Erica Briggs, NIH NRSA
Jessie Brown, 2018 Sackler Dissertation Prize
Alexander Calderon, NIH NRSA
Cristina Castro-Rivera, 2018 Chase Memorial Scholarship (from the Office of Diversity Affairs in collaboration with the National Medical Fellows)
Camila Delgado, NIH NRSA
Kristen D’Elia, NIH NRSA
Julia Derk, NIH NRSA
Dhaval Dixit, 2018 Vilcek Scholarship
Katherine Eyring, F99/K00
Vickie Fang, 2018 Sackler Dissertation Prize
Alice Fok, NIH NRSA
Erin Glennon, NIH NIDCD (F30)
Carlotta Iannello, Magna Cum Laude Award, ISMRM Annual Meeting
Tabitha Julien, NIH Diversity Supplement
Matthew Keller, NIH NRSA

Kevin Kleffman, NIH NRSA
Stephanie Lau, American Heart Association
Wei Ting Chelsea Lee, American Heart Association
Naomi Lopez-Caraballo, HHMI Gilliam Fellowship
William Martinez Ortiz, NIH NRSA
Jose Montoyo-Rosario, Travel Award, American Societ of Human Genetics Annual Meeting
William Muñoz-Miranda, 2018 Sackler Dissertation Prize
Havva Ortabozkoyun Kara, NIH NRSA
Alex Penev, NIH NRSA
Alla Peselis, Renate W. Chasman Award Brookhaven Women in Science BNL
Annabelle Suisse, Alliance pour la Recherche contre le Cancer, postdoctoral grant
Benjamin Schuman, NIH NRSA
Vladislav Sviderskiy, NIH NRSA
Warren Wu, 2018 Vilcek Scholarship
Stephen Yeung, Jan Vilcek/David Goldfarb Fellowship Endowment Fund Recipient – Department of Microbiology
Brendan Zotter, NIH NRSA
May 2019 Graduation Deadlines

Register on ALBERT at home.nyu.edu from October 8, 2018 to February 3, 2019

Preliminary thesis deadline: Friday, March 22, 2019
Final dissertation deadline: May 10, 2019

Resources for thesis preparation and the graduation checklist are available on our student community thesis defenses and graduation page, which you can access using your Kerberos ID.