GRANTS ARE THE LIFEFORCE OF ACADEMIA
One student offers her advice on applying for grants

WILD
Women's Intensive Leadership Development

KICK-STARTING INTEREST IN DEGREES IN SCIENCE
Bringing science to the classroom
Welcome to Sackler! Every August is an exciting time, as we welcome our incoming class – this year, 49 students!

For new students, we have created this short checklist of FAQs to help you orient your way through your first few weeks on campus.

Where is the Sackler graduate school office located?

The majority of the office is located in the Medical Science Building, on the 2nd floor, Room 228. Naoko Tanese, PhD, Associate Dean for Biomedical Sciences, is located in the Skirball 3rd floor Administration area.

Are there any listservs I should join?

You have all been included on the Sackler listserv. You also have been included on the internal Sackler Students and Research Communities, available via atNYULMC.org. Once you are onboarded, you will have access to this internal online resource and be able to access these communities for important information. The Sackler Students Community is where we post events, career opportunities, funding announcements, and more! If you are interested in signing up for the reagentmatch listserv, where students, postdocs, and faculty can request and provide reagents/equipment, please visit the Sackler Students Community under “what’s new” to subscribe.

Are there any recurring Sackler-sponsored seminar series or events I should attend?

You will receive announcements via the Sackler listserv regarding seminars and other events. We also hold monthly staff dinners, again communicated via email. Space is limited to 20 people, so sign up early! Please also join us for Coffee with Sackler every Wednesday, 2pm, in MSB 224. Of course, we encourage that you attend the various student Works-in-Progress series and thesis defenses, so you can continually learn about the research of your peers. Schedules may be found on Sackler Students Community website.

Please remember that although you will be onboarded from August 8th, full access to the atNYULMC portal takes 1-2 weeks.

We look forward to seeing you all!

Naoko & Susanne
THE SACKLER ADMINISTRATION

Jessica Dong, MA
Program Manager, PhD Program

Lisabeth Greene, MA
Assistant Director, Graduate Student Services

Ashton Murray, MDiv
Program Manager, Diversity and Inclusion

Heather Petrucci, MSc
Program Manager, Medical Scientist Training Program (MSTP)

Tim Requarth, PhD
Lecturer in Science and Writing, Assistant Director, Academic Programs

Kelly Ruggles, PhD
Director, Academic Programs

Amanda Tufekcier
Program Manager, SURP

You can find Dr. Naoko Tanese in the Skirball 3rd Floor Administration area

The rest of the Sackler Administration can be found in MSB 228
Hello Sackler Community,

Congratulations to the incoming class! All of us on Sackler Student Council (SSC) want to wish you the warmest welcome. We are looking forward to meeting all of you and are very excited for you to become a part of our community. Some of our strengths include our diverse community, top-notch research, and sense of work-life balance. As SSC, we will strive to create an inclusive community for every person and create spaces in which we can all unite and support one another throughout this extraordinary journey that is graduate school.

All of us student council members are second years that belong to a variety of training programs and maintain a good work-life balance by engaging in different hobbies outside of lab. We hope to help guide you through the orientation process with anything you might need. Thank you to all the “Big Sibs” for volunteering to help guide all of the incoming “Little Sibs” through their first year at Sackler. Feel free to ask them about anything from move in must-haves to rotations to the best places to eat. This year Sackler has also started a new program called “Grad Groups” in which senior graduate students will lead small groups of first-years and answer any questions they might have. These “Grad Groups” can then serve as a mini-community within Sackler and allow incoming students to interact with senior graduate students providing a different perspective.

This diverse and vibrant community thrives predominantly because of the many exciting events that allow students to come and enjoy each other’s company outside of lab. We hope to continue this with various orientation events, Halloween Party, Pumpkin Carving, and Spring Semi-Formal. Some of the new events we would love to create include a mental health awareness event with discussions on mindfulness, resources available to students, and a yoga class. We would also like to expand on events celebrating underrepresented scientists and create a bake-off with Naoko as the judge! We will, of course, be continuing our regular biweekly happy hours. Additionally, we’re happy to organize events that you may suggest to us.

As your SSC, we hope to represent the student body well. Feel free to reach out to any of us with questions, concerns, and input regarding other events. Once more, welcome to Sackler!

Best Wishes,

Your SSC 2018-2019
GRANTS ARE THE LIFEFORCE OF ACADEMIA

By Alla Peselis

I believe that most of us have entered graduate school because of our curiosity of science, thirst for knowledge, and passion about making a difference. While these reasons are all true and admirable, to stay in academia, you will have to stretch them into multiple pages of justification for why you are the best candidate that deserves money. Receiving funding is the means by which the research community produces results and can, therefore, make scientific advancements.

In the United States, the funding agency that fuels research progress is the National Institute of Health (NIH). Unfortunately, securing your own funding has grown increasingly hard while becoming no less important. In the 1960s, the NIH rate of success for funding research proposals was nearly 60 percent and over the past six decades has decreased to its all-time low of 16 percent in 2013. As a result, scientists spend more of their time writing and re-writing grant proposals which have an increasingly smaller chance of getting funded, especially because the application rate has increased but the budget has not kept up.

To ensure that only the best proposals get funded, the standards have increased fueling bias in favor of experienced researchers who would make a better investment due to their track record. This has led to an uneven distribution of grant money between established and new PIs, with the proportion of young scientists holding half of the grants they had around 2000, while the proportion of funded scientists over 65 doubling.

In order to offset some of these challenges, I would like to provide some guidance on the grant process, share advice, and address challenges that you might face in the future. I hope to shed some light as well as share my experiences and show the level of dedication needed to persevere.

ABOUT GRANTS

Two of the most common fellowships to receive at the graduate level are the Graduate Research Fellowship Program (GRFP) from the NSF and the National Research Service Award (NRSA) from the NIH. The NSF fellowship provides three years of funding while the NIH provides two, with a possibility for requesting an additional year. Although your salary will not increase, your marketability will. Not only are these grants good to have when applying for post-doctoral positions, but you can spin them in different ways emphasizing writing and communication skills, tenacity, and project leadership. When applying to both grants, timing is everything.

The GRFP is only available to first or second year graduate students, but can only be submitted once, and the application is due late October through early November, depending on the field. The application consists of a three-page personal statement and a two-page research plan. No preliminary data is needed and you will mostly be judged on your ability to design an interesting project, likely based on your rotation. This grant is highly competitive with the NSF receiving approximately 40,000 proposals each year and funding about 11,000 of them.

Unlike the GRFP, the NRSA has a much more extensive application process with three deadlines per year: August, December, and April. You will be required to write a six-page statement with your sponsor (your PI), one-page of specific aims (summary of your project), and a six-page research strategy.

While preliminary data is not necessary, it will certainly be useful. Besides this, you will also have to write one-page about your choice of institutes, one-page about your training goals, two-pages on your past research experience, and several other documents of supplemental information, all of which is a time-consuming process. The review process is also extensive with reviews from an August submission becoming available only for an April re-submission, therefore, the process to receive the funding can take over a year and applying earlier in your graduate career would be beneficial.

Fortunately, NYU School of Medicine has resources to help you with these tasks. In the spring of your second year you will take a class called Grant Writing, designed to get you started on your NRSA application.

Hopefully, you will have taken a stab at the NSF’s GRFP the year before, but if you have not, here is your chance to get some of your own ideas down on paper and gain some independence over your project. The following is advice I read from Elsevier about the grant process along with my personal insights.

ADVICE

1. It is extremely important to have good science that will leave an impact.

When I wrote the GRFP, I focused my application on basic research, which is the emphasis of NSF, and listed the potential benefits of my work. Although my application received positive reviews, I was not awarded the grant, showing the high level of competition. Later, when I wrote the NRSA, I made sure to emphasize the health benefits of my project and had more space to lay out my research project and show feasibility.

2. The NIH is a vast organization with different institutes that focus on various kinds of research; find out which institute best fits your research and for what they might be...
looking. This can be done by looking at successful proposals or at the program announcements on the institute's websites.

The first time I submitted my NRSA was to NIGMS (National Institute of General Medical Sciences). I work in structural biology, but had a collaborative project related to inflammation, therefore, I believed this institute would be a good fit. After receiving my first round of reviews (during which time I was not awarded the grant, something that is very common), I resubmitted having addressed the comments and presented more preliminary data. The second time my grant was scored well, but I was still not offered the funding (at first), likely due to the money availability. Therefore, I resubmitted a third time to NIAID (National Institute of Allergy and Infection Disease), in hopes that my well-scored interdisciplinary proposal would be better received. While this process was strenuous, it highlights the importance of researching your options.

3. When submitting your proposal, you will have a program officer (PO) assigned to your grant. Maintain a good relationship with this person.

After receiving my first round of reviews from NIGMS, my PI told me to call the program officer to discuss my application. Although I did not know what exactly to say, I got on the phone and went point by point over the comments, asked his opinion about my application, and assured him that I will incorporate the suggestions and resubmit. When I received my well-scored grant the next time, I got on the phone with the PO again and talked about my chances for receiving funding which sounded promising. Unfortunately, I later learned that I was not awarded the grant, which prompted me to talk to the PO a third time. He said that, regrettably, funds had become limited but that he will let me know if there are changes. In the midst of reapplying for the third time to NIAID, the PO got back to me and said that I had been granted funding from NIGMS. I believe that had I not talked to him, this funding might have gone to someone else.

4. Do not see the process as antagonistic and do not get discouraged.

This, of course, is easier said than done. After not receiving the GRFP and applying for the NRSA for the third time, I felt pretty discouraged. And it is hard not to take it personally. However, the statistics speak for themselves, and you have to come into it knowing that there will be a lot of failure. If you are in it to win it, you must learn from the process, improve on your ideas, and resubmit.

5. Solo research is important but collaborative relationships are key.

Collaborating with someone from another discipline is a huge boost to your application. This will allow you to propose more diverse experiments and back-up your ability to perform them with a collaboration. The first time I applied to the NRSA, my only sponsor was my PI who was semi-newly established. When I was resubmitting my proposal, I asked whether our collaborator, an HHMI investigator, would be a co-sponsor, enhancing my credibility to do proposed work with our interdisciplinary inflammation project.

6. Mentors can be of significant help in providing guidance and advice on the grant-making system or on a research subject, but the onus remains on you to craft individualistic proposals.

Remember that this is the reason that you came to graduate school, because of your curiosity of science, thirst for knowledge, and passion about making a difference. Writing a grant will help you critically analyze a problem, see pitfalls in your plan and find ways around them, as well as prepare you for much more writing in the future.

ENDEMIC PROBLEMS

While this advice aims to help you succeed, the challenges ahead are still great and stem from two main problems in research. One is that labs are staffed with low-wage, temporary workers (graduate students and postdocs) which means that universities are continually recruiting and training more workers regardless of their job prospects. An article in Proceedings of the National Academy of Sciences recently noted that research institutions have trained graduate students and postdocs for research careers that can only accommodate a sixth of their number.

A second problem is that career advancement depends on advantages in productivity, skill, and networking, which lead to faculty jobs, grant funding, and tenure. The result is a competitive environment, and, when funding is low, the differences between proposals that are funded versus those that are not can be small. Thus, a system that is supposed to be the source of unbiased ideas, information, and technology for the advancement of society has become bound by the necessity for funds provided by people who care that those investments pay off and not necessarily to answer the open-ended scientific hypotheses.

The competition that has been established by this system has led to more rushed publications, leading to problems with reproducibility, and a structure that does not favor taking chances on challenging projects. Furthermore, it has promoted individuals who work well in a hyper-competitive environment, making work-life balance a difficult thing to come by. This can take even the best scientists down a dark path.

My original dissertation project with our collaborators lab was based on a piece of data that was later found to not be reproducible, and their paper, published in Nature, was recently retracted. Perhaps the lead postdoc was under immense pressure to produce positive results that would lead to a faculty position. Nevertheless, I had already received two years of funding on this project from the NRSA. So, the last piece of advice I will leave you with is that you do not have to keep working on the project you get funded for (at least not during graduate school). The grants that you would receive are aimed to help your training as a scientist, and that should be the biggest emphasis of your graduate application.

FUTURE PROSPECTS

Fortunately, the NIH is taking steps to address these issues by now dedicating funding to projects that focus on improving quality and reproducibility. It has also implemented measures to cap the number of grants any one scientist can receive, giving a better chance to newer faculty members. However, to further ensure that the NIH budget does not suffer as a result of declining R&D, and therefore interest from investors, the NIH could also encourage publication quality over volume, and place a greater importance on promotions as a result of good scientific mentoring, by listening to feedback from those being trained, instead of gains won by competition.
A REFLECTION ON IDENTITY

By Alexander Calderon

“So what are you going to study? Fashion? Design? Art?”

“Biochemistry.”

“Oh.”

This conversation was typical of my last year of high school. There’s nothing wrong with studying the arts, but why am I constantly pressured to do so? Why must I always do something “creative?” Even after starting college, I thought that my peers who were equally nerdy wouldn’t question my passions or interests but instead I was constantly asked why I chose my field of study. It was like a broken record, “So Alex, why pick science as opposed to any other field, like theater?” It was an innocent question at the surface but I knew what they were really getting at was “Why are you majoring in Biochemistry? You’re gay!” I just rolled my eyes and made it here to Sackler to start my PhD.

In my experience,* within the scientific community, for the most part, my identity is something reserved for conversations with my peers. My homosexuality only comes up when talking to my colleagues when we get together to commiserate. My queerness is something I don’t think about much when I’m in the lab. My science speaks for itself and me being gay is just some other fact about me, like my hair color or height — irrelevant data used to describe me that doesn’t give much insight into my science. However, I do recognize that not having to censor myself and having the ability to be comfortable being myself is critical to my overall wellbeing and my science. Could you imagine having to go through your PhD not only worrying about your project, but also worrying about how people’s perception of you impacts your professional outcome? The way people view you affects how they treat you and today networking is everything, having someone view you negatively can impact your career. That being said, there is more work to be done.

I think as a scientific community, we have momentum, where actively trying to create diverse environments isn’t just some radical idea but a goal for which all major research institutions are striving. I feel that within a few years having a diverse faculty and student body will be the standard, not the exception. I think this is incredible progress. Not to be dramatic, but only 60 years ago, Alan Turing, the father of theoretical computer science, was chemically castrated as punishment in the UK for “gross indecency.” Within one lifetime, we have gone from criminalizing homosexual acts to actively working on bringing in more queer people into the scientific community. Now that a critical mass is being reached, queer students can begin to organize and try to better their institutions (kind of hard to start a club if you’re the only one in it).

Diversity of people leads to diversity of thought, which leads to great conversations and ultimately better science. I know my classmates probably know me as a sarcastic, cynical, pessimistic, tired person, but honestly if I really thought that there was no hope I wouldn’t be trying so hard to promote a diverse environment. I think its easy to allow other people to do the work but sometimes you have to recognize that it takes every single last one of us. We need to have a real imagination and strive towards a community for which we can be proud. We shouldn’t settle for compromises all the time and relegate ourselves to making tiny baby steps forever, waiting for things to get better on their own. For me, that would be being able to walk into a room and not feel isolated, to know that I am loved and supported by my peers; to know I am valued. I hope we can all feel that.

*Everyone has different experiences and perceptions. I can say I am very lucky to be doing my PhD in New York, if I lived in a different area, maybe my opinion would be different.

$Homosexuality is still punishable by death in 10 countries worldwide.
As a lifelong musician, I won’t deny that my decision to enter the Sackler PhD program was partly influenced by a desire to experience the legendary cultural scene of New York City. Indeed, as I enter my fifth year here, I can say that I know of no other place that is as diverse and adventurous in its creative opportunities as New York City. However, moving here from my home in Chicago also meant that I would lose my community of fellow artists, and that I would have to re-learn the intricacies of the local scene.

I met post doc and guitarist Matt Witkowski through a Sackler happy hour event; fortuitously, we both had single tickets to the same show the next week, and instantly connected through shared musical interests. After a few casual jams, we started writing original tunes as a punk outfit, now officially known as Bees. We practiced out of a space in the medical center. After several months of songwriting, we had a full set ready, and were eager to start gigging around the city.

Our first show was at a bar in Bushwick, Brooklyn. More than 50 of our friends showed up; the band was definitely a little rough around the edges, but it was a wild night that I’ll never forget. Since then, Bees has grown a lot as a band. We were later joined by drummer Colin Zollo, who works at the Flow Cytometry core facility here at NYU. We continued to play at venues across the city with local and touring acts, while teaching ourselves how to manage a working band. I’m proud to say that earlier this year, Bees professionally recorded and released a full-length album, the culmination of our work over the last year and a half. We are now using the album as an opportunity to promote the band to a wider audience, and travel to other nearby cities to support it.

Although graduate school has been the biggest challenge of my life, I have still found the time to help build this band from the ground up, and we’re moving ever upwards. Moreover, I cherish the close community of trainees in Sackler, without whose friendship and support Bees would truly never exist.
ALUMNI PROFILE:
DR. CATHERINE PEI-JU LU

A Sackler alumnae's insight on the road to becoming an assistant professor

By Lea Lough

Dr. Catherine Pei-ju Lu was wearing a dress and heels when I met her for the first time. She looked ready to take on anything the world was going to throw at her, including our interview. Catherine shared her story, how she came to be a newly-hired assistant professor in the Department of Plastic Surgery and in the Department of Cell Biology at the New York University School of Medicine. She finished her PhD at our very own Sackler Institute in the Molecular Oncology and Tumor Immunology Program, and now, her office is on the same floor as her old PhD lab. I could tell that her long journey to this position was just a few months behind her. She was, what I, and many others would consider, the unicorn of science, with a CV of high impact publications from high profile labs. It is easy to believe that high impact papers will pave the road and numerous opportunities will unveil themselves at once. However, this was not the case and it was very pleasant to hear Catherine's insight about all the hard work that it took for her to get her dream job.

Like all great scientists, Catherine seems to welcome change. Originally from Taiwan, she attended Baylor College of Medicine in Houston to pursue her graduate degree. Soon after joining Dr. David Roth's lab, she once again moved with the lab to NYU in 2002. Catherine recalled being surrounded by great labs that created a stimulating environment while working on the second floor of the Skirball Institute of Biomolecular Medicine. I could tell that Catherine really enjoyed her time at NYU and had many fond memories. As a PhD student, Catherine published three first author papers on DNA repair and the mechanisms of programmed gene rearrangements during lymphocyte differentiation in the Journal of Nature Structural & Molecular Biology, Journal of Immunology, and Journal of Nucleic Acids Research. After graduating in five-and-a-half years, Catherine started a postdoc in the world-renowned lab of Dr. Elaine Fuchs at the Rockefeller University.

At Rockefeller University, Catherine’s hard work paid off and she published numerous papers in the prestigious Cell and Science journals. However, even with all these triumphs, Catherine was not immune to the funding rejections that every scientist encounters. She recalled being devastated and puzzled by the “not discussed” feedback when her sought-after K99 grant was rejected. However, with her preliminary data and encouragement from her lab head, Catherine completed the work exactly as proposed and published in Science two years later. There was a sense of calmness when Catherine talked about the ups and downs - like she had been taking it all in as a learning opportunity. There was no bitterness or resentment when she stated that science was political and not to take it personally.

After her first publication, Catherine started looking for faculty positions, but due to her geological limitations of staying in New York City, there were not a lot of positions available. In addition, Catherine’s expertise was very specific to sweat gland stem cells, which added an extra layer of complexity and a longer than expected time frame to find a suitable position.

When I asked Catherine what drove her to keep pursuing a faculty position – she said, “I enjoy discovery and asking questions to solve puzzles and put together a story.” In addition, her PI Elaine Fuchs was extremely supportive and willing to provide resources till she found a suitable position. Her hard work and desire to share her scientific discoveries led Catherine to make the personal connection and referral to her current position.

At a conference, Catherine met a senior colleague, who told her about the new initiative of Regenerative Medicine that NYU was about to launch. The goal of this initiative, which is supported by various clinical departments, including The Hansjörg Wyss Department of Plastic Surgery, is to regenerate limbs and organs using innovative biomaterials and bioengineering, which will have significant translational impact on human patients. Catherine’s expertise in sweat gland stem cell and regeneration are perfectly suited to this new program and will contribute to skin regeneration to benefit burn patients. Not long after, Catherine was hired as an assistant professor and is extremely grateful for her chair, Dr. Eduardo Rodriguez, for the opportunity to be back at NYU. You can say that the stars were aligned, but it was not a coincidence that got Catherine her current position and she is truly an inspiration to the meaning of hard work and dedication.

As scientists, we are all enamored with the idea of the perfect position, and for a large number of us, that is becoming an assistant professor. Catherine’s story puts things into context with hard work, dedication, and good science. Even more admirably, Catherine managed to have time to get married and have two beautiful children. When asked whether she would have done anything different, she said, “staying in academia is very difficult and is not for everyone. But I am happy that I stayed, and I am grateful to have had the opportunity since this is what I have been wanting to do since I was 16 [years old].”
By Caroline Amendola

When people hear the word “wild,” images of trees and animals, mountains and lakes, may come to mind but for a group of post-docs and graduate students, (myself included) the word “wild” has additional meaning. To us, WILD also stands for Women’s Intensive Leadership Development (WILD). The NYU WILD Program, started by Drs. Arthee Jahangir and Keith Micoli in the NYU Postdoctoral Affairs Office, aims to help women build leadership skills through hiking, camping, and workshops. The seven-month program culminates in a challenging, eight-day, hundred mile through-hike on the Northville-Placid Trail in the Adirondacks this September 2018.

I had never thought about hiking as an avenue to become a better leader, but when I got the email about WILD, I knew I had to apply. If you think about it, hiking is a unique and demanding way to cultivate leadership skills. Hiking, especially long, multiday treks requires planning, communication, delegation, decisiveness, situation analysis, and conflict resolution, all of which are key skills for leaders to hone. Being unprepared, indecisive or lacking the ability to analyze the current situation can have serious consequences on the trail.

My teammates and I entered the program in February to prepare for the through-hike in September. To prepare, we had monthly planning and leadership workshops, went on day hikes, urban hikes, and overnight backpacking trips. The workshops covered a wide range of topics, including personality types, conflict resolution styles, personal narratives, what it means to be a woman leader, how women leaders are perceived, inequality, and body language. During one of our first workshops we discussed stories about inspiring women leaders who broke barriers, such as Ann Bancroft. Ann was the first woman to cross both polar ice caps to reach the North and South Poles. I felt inspired by Ann’s story; she had a goal, she trained for that goal, and she succeeded despite people telling her otherwise. I knew that WILD and the through-hike would be challenging but hearing other women’s stories made me confident that if I prepared, I could face that challenge and successfully complete the through-hike.

Anyone who has previous backpacking experience knows you have to train for long hikes to build your skills and strength. We first started with short day hikes and worked our way to longer, overnight hikes. One of the most important things to practice is hiking with a pack. A full pack for a through-hike will weigh at least thirty pounds. Walking a hundred miles with a thirty-pound pack on your back, if you’re not prepared, can be a huge physical and emotional weight.

Through this experience we have cultivated a strong peer group of like-minded female scientists who support each other and work as a team. Even in writing this article I received help from my teammates. I asked them to describe the best part of WILD. Not surprisingly, a lot of value was placed on comradery and working together to creatively solve problems and overcome challenges. Others felt quiet self-reflection in nature and building confidence in their abilities were the best parts of WILD. Having clear goals and deadlines and accomplishing them was another important aspect. Although all of us participants have a unique perspective on WILD, we all agree that WILD has been and will continue to be a transformative experience. I am looking forward to the through-hike in September and all the challenges that come with it.

WILD provides women scientists with the unique opportunity to get leadership experience outside of lab. The worth of a program like WILD is incalculable. The personal growth we experience from facing challenges in the WILD and stepping out of our comfort zones ripples into all aspects of our lives, including our science.
Students Advocating for Science, Education, and Medicine (SASEM) is the first group of its kind to include both graduate students and medical students at NYU’s School of Medicine. It was founded one year ago to enable our communities to come together to plan events concerning science, medical, and social issues that intersect with our mission to improve human health, welfare, and happiness. We believe it is our right, privilege, and responsibility to advocate for these issues to diminish suffering within our diverse communities and beyond.

Part of what makes our group special is our structure: we are a non-hierarchical organization. We do not have a president and everyone in SASEM is encouraged to participate as much, or as little, as they feel comfortable. Our meetings are open to the student bodies of the MD and PhD training programs, and anyone who comes to a SASEM meeting can propose new ideas, plan initiatives, and utilize our funding and support structures for their cause. We believe advocacy and activism should be accessible to everyone.

We also understand that we do not all protest the same way. Some people prefer to march: they feel solidarity and power in the streets with strangers, organizers, and friends. Some people prefer to call: they want their representatives to hear their exact words. Some people prefer to dive into tough conversations with our friends, our families, and ourselves about what we believe in and how we work towards actualizing a path to a better tomorrow. No size fits all and in SASEM we work to be inclusive and mindful of that.

So, how can you get involved? Maybe you’re feeling confused about current issues and want a place to come learn. Come to a SASEM teach-in. Recent topics have included: Feminism is for Everybody, Political Action for Scientists, and The Cross Section of Human Health and Climate Change. Or perhaps you’re someone who is emotionally engaged with current issues, but wants to learn more about advocacy and organizing: we want to welcome you in and empower you to do what we do. If you already participate in advocacy events and protests, we want to provide emotional, social, and financial support for you to organize the next teach-ins and direct actions. If you’re already experienced with planning, organizing, and recruiting, we want SASEM to be a place where you share your experiences and teach others how to actively engage with their communities for better.

Most of all, SASEM events are a place to build community by leveraging our institutional privilege, minds, and hearts toward building more common good in this world.

In our first year, we organized hundreds of people to walk out of NYU Langone Medical Center in support of gun safety reform. We collected supplies for communities in Puerto Rico and Houston devastated by natural disasters, and political inaction and misaction. We protested censorship of the Centers for Disease Control and organized a fundraiser for the science advocacy organization 314 Action.

We put our reps on speed-dial, with bagels at the ready, for our early morning call-in’s to support Dreamers and prevent graduate student tuition taxation. We hosted teach-ins, panels, and discussions on gun safety reform and healthcare, sanctuary cities, climate change, feminism and #MeToo, and the backlog of untested rape kits in America. We met with our representatives and debated with them. We also met with the heads of human resources to generate better protocols for harassment reporting, opening lines of communication to better address problems we face in MD and PhD training. SASEM is only a year old and we have so much more work to do.

As the next school year approaches, we are now planning a voter registration drive, where we will also be signing up those interested for IDNYC—a free, official photo ID provided by the city of New York to anyone who lives here, including undocumented New Yorkers and international students. IDNYC also provides free memberships to museums and discounts on events throughout the city. Keep a look out for forthcoming emails with more information about this and future events, as well as our regular planning meetings. For more information about SASEM’s first year successes check out tinyurl.com/ybh86hnf. Meanwhile, should you need them, you can reach our Senator Chuck Schumer at 212-486-4430, Senator Kirsten Gillibrand at 212-688-6262, and (if you live in student housing) House Representative Carolyn Maloney at 212-987-5516.
KICK-STARTING INTEREST IN DEGREES IN SCIENCE

Thinking. Presenting. Teaching.

By Chelsea Maniscalco

"Those who know, do. Those who understand, teach." – Aristotle

We all decided to pursue a degree in science for different reasons...maybe it was because of your AP biology teacher. Maybe it was because you decided to take a random science class in college. Maybe it was because you were a mad scientist one year as a kid for Halloween. Whatever your reason, you are now here pursuing a PhD in the sciences.

Congratulations!

Your first two years of grad school are overwhelmed with classes, rotations, making friends, and exploring New York City. By the time you pass your qualifying exam, classes are over, you are in your thesis lab fulltime, and you are purely focusing on publishing your data that you collect over the next several years. I began to realize that for me, doing the science wasn’t the hard part. It was coming up with the ideas and explaining the science to people with all different scientific backgrounds. This is the part of science that I enjoy the most.

Thinking. Presenting. Teaching.

Presenting your findings to different audiences, talking with fellow grad students after presenting at the works in progress meetings, teaching people about different techniques or methods you can use in your model organism...This passion is what inspired me to start a club here at NYU School of Medicine called KIDS – Kick-starting Interest in Degrees in Science. Graduate students and postdocs travel up to a middle school in East Harlem a few times a year and bring science to their classroom. We teach them about different science topics and perform hands on science experiments with them. We also assist the teacher with test preparation for the NY state 8th grade science exam. It is one thing to explain your research to your lab, but it is a whole different ball game to explain your research to 7th and 8th graders.

Development to human development? Then, at the end of the program, several of the chicks hatched and the students were able to hold them and name them – Fluffy and Willy Wonka, to name a few.

Making science digestible to a lay audience is challenging. How do you explain a topic that is second nature to you, to an audience that doesn’t have a strong science background? Whether it’s to your family, friends outside of science, or kids, talking about science and helping people understand complex scientific ideas takes practice. Once mastered, you can help people realize that science isn’t so scary. I think every graduate student should not only learn how to do the science, but also understand the science in order to translate it to a general audience.

(If you are interested in teaching with the KIDS club, please contact Chelsea at chelsea.maniscalco@med.nyu.edu.)

One of my favorite classes we taught this year was on chick development. We decided to order fertilized chicken eggs from a chick-hatching program and watched them in an incubator at the middle school until they hatched. The company also sent us two chicks to watch while the other ones developed. A few of us went up to the school and taught the class about what was happening inside the chicken eggs. What are the stages of chick development? How long does it take a chicken egg to hatch? How similar is chick...

Katlowitz K, Piccardo MA, Long MA. Stable

*authors contributed to work equally

AWARDS & HONORS

Kameron Azarm, NIH NRSA
Erica Briggs, NIH HRSA
Jessie Brown, 2018 Sackler Dissertation Prize
Cristina Castro-Rivera, 2018 Chase Memorial Scholarship (from the Office of Diversity Affairs in collaboration with the National Medical Fellows)
Dhaval Dixit, 2018 Vilcek Scholarship
Vickie Fang, 2018 Sackler Dissertation Prize
Erin Glennon, NIH NIDCD (F30)
Carlotta Iannello, Magna Cum Laude Award, ISMRM Annual Meeting
Kevin Kleffman, NIH NRSA
Stephanie Lau, American Heart Association
Wei Ting Chelsea Lee, American Heart Association
William Muñoz-Miranda, 2018 Sackler Dissertation Prize
Alla Peselis, Renate W. Chasman Award Brookhaven Women in Science BNL
Annabelle Suisse, Alliance pour la Recherche contre le Cancer, postdoctoral grant
Benjamin Schuman, NIH NRSA
Vlad Sviderskiy, NIH NRSA
Warren Wu, 2018 Vilcek Scholarship
Stephen Yeung, Jan Vilcek/David Goldfarb Fellowship Endowment Fund Recipient – Department of Microbiology

STAFF

Editor
Cynthia Chen
Assistant Editor
Kristen D’Elia
Staff Advisor
Lisabeth Greene
Contributing Writers
Cristina Castro
Kristen D’Elia
Lea Lough
Mary Rossillo
Kaitlyn Scacalossi

GRADUATION DEADLINES

January 2019 Graduation Deadlines
Register on ALBERT at home.nyu.edu from June 18, 2018 to October 7, 2018
Preliminary thesis deadline: Friday, December 3, 2018
Final dissertation deadline: January 11, 2019

Resources for thesis preparation and the graduation checklist are available on our student community thesis defenses and graduation page, which you can access using your Kerberos ID.