40-MHz ANNULAR ARRAY IMAGING OF MOUSE EMBRYOS

ORLANDO ARISTIZÁBAL,* JEFFREY A. KETTERLING,‡ and DANIEL H. TURNBULL*†

*Skirball Institute of Biomolecular Medicine; †Departments of Radiology and Pathology, New York University School of Medicine; and ‡Frederic L. Lizzi Center for Biomedical Engineering, Riverside Research Institute, New York, NY, USA

(Received 12 December 2005, revised 9 May 2006, in final form 19 May 2006)

Abstract—Ultrasound biomicroscopy (UBM) has emerged as an important in vivo imaging approach for analyzing normal and genetically engineered mouse embryos. Current UBM systems use fixed-focus transducers, which are limited in depth-of-focus. Depending on the gestational age of the embryo, regions-of-interest in the image can extend well beyond the depth-of-focus for a fixed-focus transducer. This shortcoming makes it particularly problematic to analyze 3-D data sets and to generate accurate volumetric renderings of the mouse embryonic anatomy. To address this problem, we have developed a five-element, 40-MHz annular array transducer and a computer-controlled system to acquire and reconstruct fixed- and array-focused images of mouse embryos. Both qualitative and quantitative comparisons showed significant improvement with array-focusing, including an increase of 3 to 9 dB in signal-to-noise ratio and an increase of at least 2.5 mm in depth-of-focus. Volumetric-rendered images of brain ventricles demonstrated the clear superiority of array-focusing for 3-D analysis of mouse embryonic anatomy. (E-mail: turnbull@saturn.med.nyu.edu) © 2006 World Federation for Ultrasound in Medicine & Biology.

Key Words High-frequency arrays, Ultrasound biomicroscopy, 3-D reconstruction, Microimaging, Mouse imaging.

INTRODUCTION

With the acceptance of the mouse as a genetic model organism for studies of human development and disease, the need for effective in vivo microimaging approaches tailored to the mouse has become obvious. Ultrasound biomicroscopy (UBM), a high-frequency pulse-echo method, has emerged as an important imaging modality for in utero analysis of both normal and genetically engineered mouse embryos (Turnbull and Foster 2002). Indeed, UBM provides a unique real-time microimaging method for studying mouse cardiovascular development (Phoon and Turnbull 2003), and for direct manipulation of mouse embryos via UBM-guided injection of cells, viruses and other agents (Olsson et al. 1997; Gaiano et al. 1999; Wichterle et al. 2001).

In the decade since UBM was first introduced for imaging mouse embryos (Turnbull et al. 1995), UBM technology has progressed significantly in terms of higher image frame-rates (currently as many as ~100 frames/s), multiple imaging frequencies (over the 30 to 60 MHz range) and newer digital image processing methods (e.g., Foster et al. 2002; Goertz et al. 2003). Nevertheless, current UBM systems continue to be based on single-element focused polyvinylidene fluoride (PVDF) transducers, much the same as those described in the original UBM systems (Sherar and Foster 1989). For imaging mouse embryos, the geometric extent of many regions-of-interest, such as brain ventricles or vascular structures, can be close to an order of magnitude greater than the depth-of-focus (DOF) of a fixed-focus transducer. This makes volumetric analysis of developing mouse embryos, including effective segmentation of three-dimensional (3-D) anatomy from UBM images, difficult or impossible in many cases.

An obvious approach to increase DOF in UBM images is to employ multielement array transducers. Linear arrays are most common for conventional ultrasound imaging because of the advantages of electronic focusing and steering, eliminating the need for mechanical scanning of the transducer. However, the technical challenges of fabricating linear array transducers with large numbers of elements and element-element spacing on the order of a wavelength or less has impeded...
progress for high-frequency UBM (Ritter et al. 2002). An alternative approach is to use a high-frequency annular array transducer, with a relatively small number of annular elements to focus the beam in the axial direction, resulting in UBM images with significantly increased DOF although mechanical scanning is still required to form two-dimensional (2-D) images (Brown et al. 2004; Brown and Lockwood 2005; Gottlieb et al. 2006; Snook et al. 2006).

Previously, we described the development of a five-element, 40-MHz PVDF annular array transducer for UBM imaging (Ketterling et al. 2005). The operational capability of this transducer was recently verified using an off-line synthetic array-focusing method (Ketterling et al. 2006). Wire phantom measurements demonstrated that the two-way echo amplitude was enhanced over approximately a 10-mm range about the passive focus. Furthermore, DOF (−6 dB) was increased from approximately 1 mm (fixed-focus) to 5 mm (array-focus) and a lateral resolution of 80 μm was maintained over a 6-mm depth range about the passive focus (Ketterling et al. 2006). It is expected that heterogeneous and attenuating biologic media will degrade annular array performance compared with wire phantom experiments. The aim of the current study was to determine the potential of this 40-MHz annular array transducer for imaging mouse embryos in utero. To this end, we have analyzed fixed- and array-focused volumetric UBM images acquired from the same mouse embryos, directly comparing image quality, 3-D renderings and volumes of cerebral ventricles, and quantitative estimates of signal-to-noise-ratio (SNR) and DOF from embryo images. Our results show an increase of approximately 2.5 mm in DOF after array-focusing and demonstrate a clear superiority of the annular array transducer for both 2-D and 3-D UBM imaging.

MATERIALS AND METHODS

Array fabrication

Details of the array fabrication and characterization have been reported previously (Ketterling et al. 2005). Briefly, an equal area, five-element annular array pattern was etched into a copper clad polyimide membrane using standard printed circuit board (PCB) techniques. A 9-μm PVDF piezoelectric film, with a chrome-gold electrode on one side, was bonded to the polyimide film and pressed fit into a Teflon tube with a ball bearing. The tube was back filled with epoxy and, after curing, the resulting plug was incorporated into an ultra-high frequency connector.

The finished transducer had a total aperture of 6
mm, geometrically focused at 12 mm and with a center frequency close to 40 MHz. A small PCB was used to link the signal traces from the array elements to the coaxial cables used to connect to the front-end electronics. Surface mount inductors were soldered to the PCB to facilitate impedance matching on the individual annuli. Finally, the PCB was housed in a metallic box to provide electrical shielding (Fig. 1).

Radiofrequency data acquisition

Detailed information of the radiofrequency (RF) data acquisition and processing has been reported previously (Ketterling et al. 2006). The image acquisition instrumentation (Fig. 1) was software-controlled from a personal computer using LabVIEW (National Instruments, Austin, TX, USA). The array transducer was linearly scanned using an automated three-axis motion controller (PCI-7534, National Instruments). For a given 2-D image, RF data were acquired in 5 passes, each using a different transmit element. For each pass, one element was pulsed and RF data were received from all five elements using a bidirectional crosspoint switch (CXL/8X8, Cytec, Penfield, NY, USA). An expander (DEX-3, Matec, Northborough MA) and limiter (IN50B, Anritsu, Richardson, TX, USA) protection circuit was incorporated between the pulser (AVB2-TB-C, Avtech, Ogdensburg, NY, USA) and the cross-point switch. The RF data from four of the array elements were digitized using a digital storage oscilloscope (DSO) (6050A Lecroy, Chestnut Ridge, NY, USA), and the RF data from the fifth element were digitized using a PCI digitizer (DP110 Acqiris, Monroe, NY, USA). Each RF data line was amplified before digitization (45 dB AU-1313, Miteq, Hauppauge, NY, USA).

Synthetic focusing algorithm

The stored RF data were processed using an off-line synthetic focusing algorithm to simulate array-focusing, as described previously (Ketterling et al. 2006). Each RF line was divided into 41 focal zones, each zone being 0.17 mm wide, and appropriate time delays were applied for each of the 25 transmit/receive pairs. After applying the time delays, RF lines were summed to simulate array-focusing. Images simulating a fixed-focus transducer were formed by directly summing the RF data (without delays) from the 25 transmit/receive pairs. The fixed- and array-focus RF data were demodulated in LabVIEW software using a Hilbert transform and mean-filtered to produce bitmapped image files for qualitative and quantitative analysis.

Acquisition software was also developed to provide a "fast" imaging mode that output a fixed-focus image every 1 s by pulsing and receiving with only the center element. This low-resolution imaging mode enabled iterative adjustment of the field-of-view and the imaging plane before full data acquisition. Data for a complete 2-D UBM image consisted of 381 lines with line-to-line separation of 25-μm and an acquisition time of 40 s. Full 3-D datasets consisted of stacks of 2-D images with 50-μm separation between image planes.

Animals

All mice used in these studies were maintained under protocols approved by the Institutional Animal Care and Use Committee of the New York School of Medicine. Mouse embryos were imaged at embryonic day (E) 11.5 and E13.5, where E0.5 was defined as noon of the day a vaginal plug was found after overnight mating. In these studies to determine the feasibility of annular array imaging, the anesthetized pregnant mice were euthanized humanely by cervical dislocation immediately before image acquisition to eliminate breathing motion during the long data acquisition times. A midline laparotomy was performed to expose a selected uterine conceptus containing one embryo. The mouse was then positioned for imaging in a custom-built Plexiglas mouse holder. The embryo, intact within the uterus, was exposed through an opening in a rubber membrane into a Petri dish full of saline solution at room temperature (Fig. 1b; Olsson et al. 1997). With the array transducer in the saline solution, the low-resolution imaging mode was used to position the image planes close to one of the standard slice orientations. Subsequently, the full 3-D RF data sets from each embryo were acquired, as described above. Although in vivo imaging was obviously not our goal in these first annular array UBM studies, we observed clear evidence of embryonic heart beating and blood flow on the low-resolution images, showing that the embryos were still alive during image acquisition.

UBM image analysis

Quantitative analysis was performed to estimate SNR and DOF in fixed- and array-focused UBM images of mouse embryos. Both SNR and DOF were computed by importing both fixed- and array-focused images into ImageJ (Public domain software, National Institutes of Health, Bethesda, MD, USA) image processing software. To compute SNR, a square region-of-interest (ROI) was placed in the embryo (signal) and water (noise) and the mean intensity of each ROI measured. In this way, signal and noise values were computed for each image and SNR was calculated as the ratio of signal-to-noise. To compute DOF, a vertical rectangular ROI was defined covering the entire embryo, and an averaged profile was calculated. These profile data were then smoothed using a 20-point averaging window in Origin (OriginLab, Northampton, MA, USA). The dynamic range for each of the B-scan images was measured from the RF data, before processing, by computing the ratio of the peak
signal value to the root-mean-square of the background noise. For presentation, the dynamic range for all the B-scan image displays was 50 dB.

Volumetric segmentation, rendering and analysis were performed using Amira (Mercury Computer Systems, San Diego, CA, USA). To objectively segment the cerebral ventricles with minimal operator input, a semiautomatic segmentation tool was used. Seeds were placed in the ventricles throughout the 3-D stack from which an initial contour was computed. Under software control, the contour was expanded until the edges were detected, based on the initial image and edge sensitivity parameters. These parameters were kept constant for each data set of fixed- and array-focused stacks. For visual comparisons of segmented volumes, the fixed- and array-focused reconstructions were color-coded and overlaid with the transparency of the array-focused volume set to 50%.

RESULTS

Annular array focusing improves the quality of mouse embryo images

Mouse embryos were imaged with the annular array transducer at two different developmental stages (Fig. 2): E11.5 (n = 4) and E13.5 (n = 5). At both stages, the fixed-focus images showed a characteristic enhanced intensity band close to the passive focus (Fig. 2a, c), similar to UBM images made with traditional single-element transducers. After processing the image data using the synthetic focus algorithm, the array-focused images showed an obvious increase in image SNR and DOF (Fig. 2b, d). For E11.5 embryos, the improvement was revealed most clearly in the improved visualization of the edges of the brain ventricles and the amniotic membrane, which was sharply resolved surrounding the embryo (Fig. 2b). With the passive focus positioned superficially in E13.5 embryos, the underlying ventricles were not resolved in the fixed-focus images (Fig. 2c). After synthetic focusing, the obvious increase in DOF resulted in clear visualization of the brain ventricles, even those furthest from the transducer (Fig. 2d).

As in the E11.5 embryo, synthetic focusing in the E13.5 embryo resolved the amniotic membrane and the small gap separating the membrane, at depths up to 3 mm below the passive focus (Fig. 2d). Dynamic range was measured from 2-D UBM images acquired at both E11.5 (n = 11) and E13.5 (n = 15), showing an improvement with array-focusing at both stages: mean ± standard deviation at E11.5, 34 ± 4 dB (fixed-focus) vs. 37 ± 3 dB (array-focus); and, at E13.5, 40 ± 4 dB (fixed-focus) vs. 45 ± 4 dB (array focus). All UBM images were displayed with a full dynamic range of 50 dB.

Array focusing significantly increases SNR and DOF

To perform quantitative analysis of DOF and SNR, a series of image data sets were acquired from an E13.5 embryo, moving the passive focus of the transducer over a 6-mm depth range in 1-mm steps, starting with the passive focus situated just above the uterus wall (Fig. 3). At each depth, images were generated using the fixed- and array-focusing algorithms. Qualitatively, these images demonstrated a clear improvement in resolution of brain ventricles and increased image uniformity, SNR and DOF with array-focusing (Fig. 3a). Quantitative measurements were made of SNR as a function of passive focal depth. At each focal depth, an average SNR value was calculated from four ROIs covering the entire depth range of the embryo in a uniform part of the brain. One of the ROIs used in this calculation is shown in Fig. 3a. Measurements of SNR over the range of passive focal depths within the embryo (positions 1 to 5, Fig. 3a) demonstrated an increase of 3 to 9 dB with annular array-focusing (Fig. 3b), with the largest difference in SNR occurring when the passive focus was positioned in a superficial region of the embryo. This likely indicates that focusing with our annular array extends more in the far-field than in the near-field of the transducer, which can also be appreciated from the series of B-scan images (Fig. 3a). DOF was assessed in images acquired with the passive focus 2 mm below the surface of the uterus, in the superficial region of the embryo (Fig. 3a). Profile data across a relatively
uniform region of brain tissue demonstrated an increase in the –6-dB full width from approximately 2 mm (fixed-focus) to 4.5 mm (array-focus), an increase of approximately 2.5 mm (Fig. 3c).

Array focusing improves volumetric segmentation and analysis

To assess the potential of array-focusing for volumetric UBM analysis, 3-D stacks of 2-D UBM images were acquired for E11.5 ($n = 1$) and E13.5 ($n = 1$) embryos. For each stage embryo, both fixed- and array-focused stacks were generated and loaded into the Amira software package and the brain ventricles were segmented. At the earlier stage (E11.5), major features of the embryo were identified, including the amniotic membrane, uterus and brain ventricles, in both fixed- and array-focused UBM images (Fig. 4). Because the embryonic brain was positioned close to the passive focus, the brain ventricles were readily segmented with either fixed- (Fig. 5a) or array-focusing (Fig. 5b). Registration of the two-volume renderings showed only small geometric differences between the two reconstructed ventricles (Figs. 5c), with several obvious errors in the fixed-focus reconstruction and a 6% volume increase using array-focusing compared with fixed-focusing.
For the later-stage embryo (E13.5), when the passive focus was placed centrally in the body of the embryo, features such as the uterus, internal cavities and the limb buds were resolved in both fixed- and array-focused images (Fig. 6a-b). More anterior in the 3-D stack, when the passive focus lay in a superficial region of the embryonic brain, only the array-focused images were able to resolve the deeper brain ventricles (Fig. 6c-d). Consequently, a comparison of volumetric renderings of E13.5 embryos demonstrated much larger errors in the fixed-focus reconstructions (Fig. 7). In this case, accurate reconstruction of the entire ventricular system was only possible using array-focusing, and there was a 74% volume increase using array-focusing compared with fixed-focusing (Fig. 7a-c). The high, uniform contrast between the embryo proper, amniotic fluid and uterus also enabled threshold segmentation of the embryo surface, revealing a number of features such as the ear, eye and limb (Fig. 7d, e).

DISCUSSION AND CONCLUSIONS

We have demonstrated that a 40-MHz, five-element PVDF annular array transducer significantly improves image quality for mouse embryo UBM imaging. The increase in DOF, SNR and the array’s ability to maintain two-way lateral resolution over the field-of-view facilitates effective and accurate segmentation and 3-D visualization and analysis of structures in the developing embryo. We have quantitatively verified an increase in DOF of approximately 2.5 mm, consistent with but smaller than results obtained previously on wire phantom measurements (Ketterling et al. 2006).

A major advantage of this array transducer lies in the simplicity with which it can be fabricated. The fabrication procedure is robust and flexible enough to allow testing of multiple variations in the array pattern. In combination with the approaches described in this paper, array fabrication and testing can be performed in a timely fashion to evaluate performance for imaging biologic tissue. One of the main advantages of UBM compared with other imaging modalities is the ability to image in real time. In our current implementation of annular array imaging, data were acquired relatively slowly via a DSO and images were reconstructed off-line. In the future, implementation of a faster personal computer-based digitizer will improve 2-D acquisition times by an order of magnitude.
magnitude, to less than 5 s. We are also implementing the synthetic focusing algorithm in hardware on a custom personal computer board, to speed up image reconstruction. For full functionality, in future annular array systems will probably require dedicated beamforming hardware to provide real-time image frame rates (Brown and Lockwood 2005).

In the future, the ability to perform in vivo real-time annular array embryo imaging will significantly improve current techniques and will likely lead to new applications. With the demonstrated ability of the array to segment and visualize 3-D ROIs in the developing embryo, longitudinal studies will enable efficient and accurate volumetric analysis of normal and abnormal development, including mutant phenotypes with brain defects (Turnbull et al. 1995). Array imaging in combination with volumetric analysis will also significantly improve UBM-guided injections, by providing accurate 3-D localization of the injection needle (Olsson et al. 1997; Gaiano et al. 1999; Wichterle et al. 2001). Finally, embryonic cardiovascular imaging will benefit from real-time array imaging (Ji et al. 2003; Phoon et al. 2004). In this area, array-focusing should improve the resolution of the heart and extended vascular system, which ultimately requires 3-D analysis to understand the complex developing cardiovascular anatomy.

Acknowledgements—This research was supported by grants from the National Institutes of Health: NS038461 (DHT) and EY014371 (JAK). We dedicate this paper to our friend and colleague Fred Lizzi, who passed away on January 7, 2005.

REFERENCES

Sherar MD, Foster FS. The design and fabrication of high-frequency polyvinylidene fluoride transducers. Ultrasound Imaging 1989;11:75–94.

