Da-Neng Wang

Da-Neng Wang, PhD

Professor, Department of Cell Biology

Keywords
biophysics, cancer, channels and transporters, metabolism, structural biology of membrane proteins
Summary

Membrane transporters and channels are amazing molecules in the cell. They function to control cellular homeostasis and a number of signaling processes, and are often direct targets for therapeutic agents. Our laboratory aims to understand the molecular mechanisms of these proteins using structural, biochemical & biophysical approaches. In 2010, we published the structures of the formate channel FocA from Vibrio cholerae, with and without formate ions bound (Nature Structural & Molecular Biology, 2010). FocA is a member of the formate-nitrite transport (FNT) family. The ion selectivity filter in FocA consists of a cytoplasmic slit and a central constriction ring. Interactions of the filter with bound formate ions provide a structural basis for the ion selectivity of the channel. The structures also suggest a possible gating mechanism in which movements of a cytosolic loop open and close the channel. This is the first time that both the ion selectivity and gating mechanism was understood for an organic-ion channel. More recently, we identified another subfamily of FNT proteins as being hydrosulfide channels and determined the crystal structure of the HSC protein from Clostridium difficile (Nature, 2012a).

Another system we work on is the Na+-driven tri- and dicarboxylate transporters in the plasma membrane. In human cells, cytosolic citrate is a major precursor for the synthesis of fatty acids, triacylglycerols, cholesterol and low-density lipoprotein. Cytosolic citrate further regulates the cell’s energy balance by activating the fatty acid synthesis pathway while down-regulating both the glycolysis and fatty acid β-oxidation pathways. The cytosolic citrate concentration partially depends on direct import across the plasma membrane via the Na+-dependent citrate transporter (NaCT). Mutations of the homologous fly gene (Indy, I’m Not Dead Yet) result in reduced fat storage through calorie restriction. NaCT-knockout mice show hepatic mitochondrial biogenesis, higher lipid oxidation and energy expenditure, and reduced lipogenesis, which taken together protect the mice from obesity and insulin resistance. To understand the transport mechanism of NaCT and INDY proteins, we recently determined the 3.2 Å crystal structure of a bacterial INDY homolog (Nature, 2012b). One citrate molecule and one sodium ion are bound per protein, and their binding sites are defined by conserved amino acid motifs forming the structural basis for understanding the transporters’ specificity. Comparison of the structure of the two symmetrical halves of the transporter suggests conformational changes that propel substrate translocation.

Phone

212-263-8634

Academic office

540 First Avenue

Third Floor, Lab 5

New York, NY 10016

Lab Website
Is this your profile?
These focus areas and their associated publications are derived from medical subject headings from PubMed.
represents one publication
Loading...
*Due to PubMed processing times, the most recent publications may not be reflected in the timeline.

PhD from Stockholm University

Li, Jianping; Li, Yan; Koide, Akiko; Kuang, Huihui; Torres, Victor J; Koide, Shohei; Wang, Da-Neng; Traaseth, Nathaniel J

Nature communications. 2024 May 27; 15(1):4494

Brawley, Douglas N; Sauer, David B; Li, Jianping; Zheng, Xuhui; Koide, Akiko; Jedhe, Ganesh S; Suwatthee, Tiffany; Song, Jinmei; Liu, Zheng; Arora, Paramjit S; Koide, Shohei; Torres, Victor J; Wang, Da-Neng; Traaseth, Nathaniel J

Nature chemical biology. 2022 Jul; 18(7):706-712

Sauer, David B; Marden, Jennifer J; Sudar, Joseph C; Song, Jinmei; Mulligan, Christopher; Wang, Da-Neng

Nature communications. 2022 May 12; 13(1):2644

Sauer, David B; Wang, Bing; Sudar, Joseph C; Song, Jinmei; Marden, Jennifer; Rice, William J; Wang, Da-Neng

FEBS journal. 2022 Mar; 289(6):1515-1523

Sauer, David B; Song, Jinmei; Wang, Bing; Hilton, Jacob K; Karpowich, Nathan K; Mindell, Joseph A; Rice, William J; Wang, Da-Neng

Nature. 2021 Mar; 591(7848):157-161

Sauer, David B; Trebesch, Noah; Marden, Jennifer J; Cocco, Nicolette; Song, Jinmei; Koide, Akiko; Koide, Shohei; Tajkhorshid, Emad; Wang, Da-Neng

eLife. 2020 Sep 01; 9:

Sauer, David B; Wang, Da-Neng

Bioinformatics. 2019 Sep 15; 35(18):3224-3231

Wang, Da-Neng; Qin, Lu-Chang

Protein & cell. 2019 Feb; 10(2):79-86