Daniel B. Rifkin

Daniel B. Rifkin, PhD

Professor, Department of Cell Biology

Charles Aden Poindexter Professor of Medicine, Department of Medicine

extracellular control of growth factor action, cancer, stem cell biology

The Rifkin lab's major interest is in understanding transfer of information in the extracellular environment and the impact of this process on diseases such as cancer. As a model to study how extracellular molecular cues are processed, we have chosen to examine the manner in which growth factors are presented to their receptors. While at first thought this may appear to be straight forward, the interaction of a growth factor with its receptor occurs only under specific conditions: growth factor diffusion must be controlled to ensure that sufficiently high concentrations are reached, many growth factors must be activated before binding to their cognate receptor, and growth factors function is highly contextual. These facts make the problem of understanding growth factor availability in both time and space interesting and challenging. Indeed, improper growth factor presentation may be the cause of a number of pathologies including tumor growth, fibrosis, and autoimmunity.

Our research is focused on elucidating how transforming growth factor-ß (TGF-ß) is regulated. The TGF-ßs (ß1, ß2, ß3) are 25kD dimeric cytokines derived from larger precursors by intracellular processing by furins. However, even though the bonds between the TGF-ß dimer and the propeptide dimer are cleaved within the trans Golgi, the propeptide remains tightly associated with the growth factor by non covalent interactions. This association renders the TGF-ß unable to interact with its receptor. Thus, TGF-ß is normally secreted in a latent form and to act must be liberated from interaction with its propeptide, also known as the latency associated protein (LAP). The extracellular forms of latent TGF-ß are also associated with a second gene product, the latent TGF-ß binding protein (LTBP). LTBPs are complex proteins consisting of multiple EGF-like domains and signature 8-cysteine-containing modules. LTBPs are joined to LAP via a pair of disulfide bonds that form between cysteine residues near the amino terminus of LAP and a pair of cysteines in the third 8-cysteine domains of LTBP-1, 3 or 4

The research efforts of the laboratory are focused on several themes that relate to the fundamental biology of TGF-ß and its activation. First, we are interested in elucidating the mechanisms that convert latent to active TGF-ß. We have described activation by proteases and by the integrin alpha vß6. We are currently performing molecular experiments to establish the role of LTBP in this process, the regions of LTBP that are involved, and the biochemical constituents that are part of the activation reaction. We have also developed a genetic screen for molecules that activate latent TGF-ß. We have isolated several cell clones that may express novel activators and are in the process of characterizing these activators. Our ultimate goal is to understand latent TGF-ß activation in a way that will permit the design of inhibitors for specific activation pathways.

Second, we are studying LTBP function by creating mouse mutants in which either null mutations have been introduced into the LTBP genes, mutations have been made that affect LTBP function, or point mutations in LAP have been generated that will block binding to LTBP. These mutations have revealed several interesting phenotypes in bone, lung, and fat differentiation are informative with respect to aspects of TGF-ß biology.

Third, we are interested in the role of the LTBPs during early development. We have found that these proteins may participate in patterning of the dorsal ventral axes in early embryos. We think that this occurs via interactions with the TGF-ß superfamily members activin and nodal. We are interested in understanding the developmental consequences of these interactions as well as the biochemical parameters that control them.



Academic office

550 First Avenue, Medical Science Building

Sixth Floor, Room 638

New York, NY 10016

Lab Website
Is this your profile?
These focus areas and their associated publications are derived from medical subject headings from PubMed.
represents one publication

Professor, Department of Cell Biology

Charles Aden Poindexter Professor of Medicine, Department of Medicine

Dir Cell& MoleBio Pgm Instrc& Lecturer-Cell Bio

PhD from Rockefeller University

Morkmued, Supawich; Hemmerle, Joseph; Mathieu, Eric; Laugel-Haushalter, Virginie; Dabovic, Branka; Rifkin, Daniel B; Dolle, Pascal; Niederreither, Karen; Bloch-Zupan, Agnes

European journal of oral sciences. 2017 Feb; 125(1):8-17

Selvamurugan, Nagarajan; He, Zhiming; Rifkin, Daniel; Dabovic, Branka; Partridge, Nicola C

Stem cells international. 2017; 2017:2450327-2450327

Dietzel, Eileen; Weiskirchen, Sabine; Floehr, Julia; Horiguchi, Masahito; Todorovic, Vesna; Rifkin, Daniel B; Jahnen-Dechent, Willi; Weiskirchen, Ralf

Biochemical & biophysical research communications. 2016 Dec 9; 482(4):1387-1392

Bellini, C; Korneva, A; Zilberberg, L; Ramirez, F; Rifkin, D B; Humphrey, J D

Journal of biomechanics. 2016 Aug 16; 49(12):2383-2389

Robertson, Ian B; Rifkin, Daniel B

Cold Spring Harbor perspectives in biology. 2016 Jun 1; 8(6):?-?

Recouvreux, Maria Victoria; Camilletti, Maria Andrea; Rifkin, Daniel B; Diaz-Torga, Graciela

Journal of endocrinology. 2016 Mar; 228(3):R73-R83

Sonic Hedgehog (shh) Signaling Regulates Myofibroblast Function During Alveolar Septum Formation In Postnatal Lung [Meeting Abstract]

Kugler, MC; Loomis, CA; Ramos, J; Joyner, AL; Rom, WN; Rifkin, DB; Munger, J

American journal of respiratory & critical care medicine. 2016; 193:?-?

Zilberberg, Lior; Phoon, Colin K L; Robertson, Ian; Dabovic, Branka; Ramirez, Francesco; Rifkin, Daniel B

Proceedings of the National Academy of Sciences of the United States of America (PNAS). 2015 Nov 10; 112(45):14012-14017