Skip to Main Content
Gregory David

Gregory David, PhD

Associate Professor, Department of Biochemistry and Molecular Pharmacology

Associate Professor, Department of Urology

chromatin modifications in development and oncogenesis, cancer, genome integrity, pharmacology, stem cell biology

The research interests of our laboratory center on chromatin modifications and its impact on regulation of gene expression and nuclear structure, particularly as it relates changes associated with malignant transformation. Clearly, the interplay between activation and repression of transcription that imposes normal transcriptional control becomes disrupted in cancer. Besides their roles in promoter-specific transcriptional regulation, histone modifiers also play a role in the establishment of large chromosomal domains, and therefore function in maintenance of chromosomal integrity. We and others have shown that deregulation of histone modifying complexes, including Histone Deacetylases (HDACs)-containing complexes, participate to the oncogenic transformation in numerous human cancers. Several studies suggested that blocking the enzymatic activity of HDAC complexes (e.g., using histone deacetylase inhibitors) could prevent tumorigenesis and selectively induce cell death in transformed cells. While HDACs are integral components of several gene regulatory complexes, HDAC inhibitors developed to date exhibit little or no specificity towards individual HDAC-containing complex. Thus, the identification of pathways involved in the modulation of the activities of specific HDAC complexes is a priority in cancer therapy. Knowledge of these control mechanisms in both normal physiology and malignancy is essential for the better understanding of the malignant process that will allow development of novel therapeutic and diagnostic approaches to human disease.
We have recently developed valuable biological tools to study the prominent HDAC-containing complex in mammalian cells, the mSin3-HDAC complex. The mSin3 complex was the first chromatin modifying complex shown to be deregulated in human cancers. However, the molecular basis for the malignant phenotype in those tumors remain unclear, impairing the development of efficient targeted therapies. Using genetic recombination, we generated mouse strains that can be spatially and temporally genetically inactivated for different components of the mSin3-HDAC complex. Those unique reagents will enable the precise delineation of the in vivo consequences of deregulation or inactivation of the complex on mammalian development and oncogenesis, and enable the development of rational targeted therapies.





Academic office

The Alexandria Center of Life, 450 East 29th Street

East Tower, 935

New York, NY 10016

Is this your profile?
These focus areas and their associated publications are derived from medical subject headings from PubMed.
represents one publication
*Due to PubMed processing times, the most recent publications may not be reflected in the timeline.

Co-Director, Medical Scientist Training Program

PhD from Pasteur Institute

Morales-Valencia, Jorge; Lau, Lena; Martí-Nin, Teresa; Ozerdem, Ugur; David, Gregory

Oncogene. 2022 Sep; 41(38):4361-4370

Morales-Valencia, Jorge; David, Gregory

Current opinion in genetics & development. 2022 Apr 29; 74:101914

Bisserier, Malik; Mathiyalagan, Prabhu; Zhang, Shihong; Elmastour, Firas; Dorfmüller, Peter; Humbert, Marc; David, Gregory; Tarzami, Sima; Weber, Thomas; Perros, Frederic; Sassi, Yassine; Sahoo, Susmita; Hadri, Lahouaria

Circulation. 2021 Jul 06; 144(1):52-73

Modrek, Aram S; Tanese, Naoko; Placantonakis, Dimitris G; Sulman, Erik P; Rivera, Rafael; Du, Kevin L; Gerber, Naamit K; David, Gregory; Chesler, Mitchell; Philips, Mark R; Cangiarella, Joan

Academic medicine. 2021 Apr 01; 96(4):518-521

Yao, Changfu; Guan, Xiangrong; Carraro, Gianni; Parimon, Tanyalak; Liu, Xue; Huang, Guanling; Mulay, Apoorva; Soukiasian, Harmik J; David, Gregory; Weigt, Stephen S; Belperio, John A; Chen, Peter; Jiang, Dianhua; Noble, Paul W; Stripp, Barry R

American journal of respiratory & critical care medicine. 2021 03 15; 203(6):707-717

Lau, Lena; David, Gregory

Expert opinion on therapeutic targets. 2019 Dec; 23(12):1041-1051

Lau, Lena; Porciuncula, Angelo; Yu, Alex; Iwakura, Yoichiro; David, Gregory

Molecular & cellular biology. 2019 Jun 15; 39(12):