Professor Emeritus of Biochemistry and Molecular Pharmacology, Department of Biochemistry and Molecular Pharmacology
Our research concerns the structure, localization, biosynthesis, and functional roles of proteoglycans in nervous tissue. Proteoglycans are proteins to which a special type of sugar chain, a sulfated glycosaminoglycan, is attached, and 1 to 100 or more such chains may be present on a single proteoglycan core protein. Because proteoglycans are often highly complex molecules containing a number of distinct protein domains and different types of carbohydrate units, individual regions of the molecule may serve different biological functions. Proteoglycans, and the unsulfated glycosaminoglycan hyaluronan, are for the most part present on the cell surface or surrounding cells in the extracellular space, where they are known to interact with other cell surface proteins and extracellular matrix molecules, but we have also demonstrated their presence in the cytoplasm and nucleus. Our interest focuses on the roles of proteoglycans in cell interactions during nervous tissue development and repair after injury, and their regulatory functions in cell growth and differentiation.
212-725-1256
550 First Avenue, Smilow Building
Room 201
New York, NY 10016
Professor Emeritus of Biochemistry and Molecular Pharmacology, Department of Biochemistry and Molecular Pharmacology at NYU Grossman School of Medicine
MD from University of Chicago
PhD from University of Chicago
Journal of neurochemistry. 2015 Jul; 134(1):147-55
Journal of neuroscience. 2010 Apr 28; 30(17):5843-54
Clinical & experimental pharmacology & physiology. 2010 Apr; 37(4):417-21
Glycobiology. 2006 Sep; 16(9):863-73
Experimental eye research. 2004 Sep; 79(3):351-6
Brain research. Developmental brain research. 2004 Aug 18; 152(1):1-10