Structure and Mechanism of Membrane Transporters


Recent Publications (* indicates a graduate student)

  1. Assembly and mechanism of a group II ECF transporter. N.K. Karpowich and D.N. Wang. (2013)Proc. Nat. Acad. Sci. USA. 110, 2534-2539.
    Structure of EcfA-A' heterodimer with ADP (PDB code 4HLU)
  2. Ben Franklin, Philadelphia's favorite son, was a membrane biophysicist. D.N. Wang. H. Stieglitz, J. Marden and L. Tamm (2013) Biophys. J. 104, 287-291.
  3. Structure and mechanism of a bacterial sodium-dependent dicarboxylate transporter. R. Mancusso*, G.G. Gregorio, Q. Liu and D.N. Wang. (2012) Nature. doi:10.1038/nature11542, 491, 622-626.  
    nature11542-S1.pdf Supplement online materials
    VcINDY-citrate-Na+ structure (PDB code 4F35)
  4. Identification and characterization of a bacterial hydrosulfide ion channel.B.C. Czyzewski* and D.N. Wang. (2012) Nature. doi:10.1038/nature10881, 483, 494-497. 
    nature10881-S1.pdf Supplement online materials
    HSC structure at pH 4.5 (PDB code 3TDP)
    HSC structure at pH 7.5 (PDB code 3TDR)
    HSC structure at pH 9.0 (PDB code 3TDO)
    HSC-K16S structure at pH 9.0 (PDB code 3TE2)
    HSC-L82V structure at pH 9.0 (PDB code 3TDX)
    HSC-T84A structure at pH 9.0 (PDB code 3TE1)
    HSC-K148E structure at pH 9.0 (PDB code 3TE0)
    HSC-F194I structure at pH 9.0 (PDB code 3TDS)
  5. Simple screening method for improving membrane protein thermostability. R. Mancusso*, N.K. Karpowich, B.C. Czyzewski* and D.N. Wang. (2011) Methods. 55, 324-329.
  6. The New York Consortium on Membrane Protein Structure (NYCOMPS): a high-throughput platform for structural genomics of integral membrane proteins. J. Love, F. Mancia, L. Shapiro, M. Punta, B. Rost, M. Girvin, D.N. Wang, M. Zhou, J.F. Hunt, T. Szyperski, E. Gouaux, R. MacKinnon, A. McDermott, B. Honig, M. Inouye, G. Montelione and W.A. Hendrickson (2010) J. Struct. Funct. Genomics. 11, 191-199.
  7. Substrate and drug binding sites in LeuT. A. Nyola, N.K. Karpowich, J. Zhen, J. Marden, M.E.A. Reith and D.N. Wang. (2010) Curr. Opin. Struct. Biol. 20, 415-422, DOI: 10.1016/
  8. Biophysics: Transporter in the spotlight. N.K. Karpowich and D.N. Wang. (2010) Nature 465, 171-172.
  9. Structure and mechanism of a pentameric formate channel. A.B. Waight*, J. Love and D.N. Wang. (2010) Nat. Struct. Mol. Biol. 17, 31-37, published online December 13, 2009, doi:10.1038/nsmb.1740.
    nsmb.1740-S1.pdf Supplement online materials
    Formate channel at 2.13 Å Atomic coordinate file (PDB code 3KLY)
    Formate channel with formate ions bound at 2.5 Å Atomic coordinate file (PDB code 3KLZ)
    News & Views Commentary by Douglas Theobald & Chris Miller
  10. Structural basis of substrate selectivity in the glycerol-3-phosphate:phosphate antiporter GlpT. C.J. Law&, G. Enkavi&, D.N. Wang, and E. Tajkhorshid (2009) Biophys. J. 97, 1346-1353.
    (&: Joint first-authors)
  11. Antidepressant specificity of serotonin transporter suggested by three LeuT-SSRI structures.Z. Zhou&, J. Zhen&, N.K. Karpowich, C.J. Law, M.E.A. Reith and D.N. Wang. (2009) Nat. Struct. Mol. Biol. 16, 652-657.
    NSMB-LeuT-SSRIs-SI.pdf Supplement online materials
    (&: Joint first-authors)
    LeuT-setraline.pdb Atomic coordinate file (PDB code 3GWU)
    LeuT-R-fluoxetine.pdb Atomic coordinate file (PDB code 3GWV)
    LeuT-S-fluoxetine.pdb Atomic coordinate file (PDB code 3GWW)
  12. Structural biology: Symmetric transporters for asymmetric transport. N.K. Karpowich and D.N. Wang. (2008) Science 321, 781-782.
  13. Ins and outs of major facilitator superfamily antiporters. C.J. Law, P.C. Maloney and D.N. Wang. (2008) Ann. Rev. Microbiol. 62, 289-305.
  14. Three-dimensional architecture of hair-bundle linkages revealed by electron-microscopic tomography. M. Auer, A.J. Koster, U. Ziese, C. Bajaj, N. Volkmann, D.N. Wang and A.J. Hudspeth. (2008) J. Assoc. Res. Otolaryng. 9, 215-224.
  15. Salt bridge dynamics control substrate-induced conformational change in the membrane transporter GlpT. C.J. Law&, J. Almqvist&, A. Bernstein, R.M. Goetz, Y. Huang, C. Soudant, A. Laaksonen, S. Hovmöller and D.N. Wang. (2008) J. Mol. Biol. 378, 826-837.
    (&: Joint first-authors)
  16. Docking and homology modeling explain inhibition of the human vesicular glutamate transporters. J. Almqvist, Y. Huang, A. Laaksonen, D.N. Wang and S. Hovmöller. (2007) Protein Sci.16, 1819-1829.
  17. Kinetic evidence is consistent with the rocker-switch mechanism of the membrane transport by GlpT. C.J. Law, Q. Yang, C. Soudant, P.C. Maloney and D.N. Wang. (2007) Biochemistry 46, 12190-12197.
  18. LeuT-desipramine structure reveals how antidepressants block neurotransmitter reuptake. Z. Zhou&, J. Zhen&, N.K. Karpowich, R.M. Goetz, C.J. Law, M.E.A. Reith and D.N. Wang. (2007) Science317, 1390-1393.
    Science-LeuT-desipramine-SOM.pdf Supplement online materials
    (*: Joint first-authors)
    LeuT-desipramine.pdb Atomic coordinate file (PDB code 2QJU)
  19. Crystal structure and mechanism of GlpT, the glycerol-3-phosphate transporter from E. coli.M.J. Lemieux*, Y. Huang and D.N. Wang. (2005) J. Electron Mircosc. (Tokyo) 54, i43-i46.
  20. Homology modeling of the human glucose-6-phosphate transporter explains the mutations that cuase the glycogen storage disease type Ib. J. Almqvist, Y. Huang, S. Hovmöller and D.N. Wang. (2004) Biochemistry 43, 9289-9297.
  21. Electron microscopic analysis of KvAP K+ channels in an open conformation. Q.X. Jiang, D.N. Wang and R. MacKinnon. (2004) Nature 430, 806-810.
  22. Glycerol-3-phosphate transporter from Escherichia coli: Structure, function and regulation.M.J. Lemieux*, Y. Huang and D.N. Wang. (2004) Res. Microbiol. 155, 623-629.
  23. Structural basis of substrate translocation by the Escherichia coli glycerol-3-phosphate transporter: A member of the major facilitator superfamily. M.J. Lemieux*, Y. Huang and D.N. Wang. (2004) Curr. Opin. Struct. Biol. 14, 405-412.
  24. Practical aspects of overexpressing bacterial secondary membrane transporters for structural studies. D.N. Wang, M. Safferling, M.J. Lemieux*, H. Griffith, Y. Chen and X.D. Li. (2003) Biochim. Biophys. Acta 1610, 23-36.
  25. Purification and characterization of transporter proteins from human erythrocyte membrane.D.N. Wang, M.J. Lemieux* and J.M. Boulter. (2003) Methods Mol. Biol. 228, 239-255.
  26. Structure and mechanism of the glycerol-3-phosphate transporter from Escherichia coli. Y. Huang&, M.J. Lemieux&*, J. Song, M. Auer and D.N. Wang. (2003) Science 301, 616-620.
    (&: Joint first-authors)
    Science-GlpT-2003.pdf Full text in PDF
    Science-GlpT-SOM.pdf Supplement-online-materials in PDF Quicktime Movie Quicktime Movie
    Science-Perspective.pdf Commentary By K. Locher, R. Bass and D. Rees
    GlpT.pdb Atomic coordinate file (PDB code 1PW4)
  27. Three-dimensional crystallization of the Escherichia coli glycerol-3-phosphate transporter: a member of the major facilitator superfamily. M.J. Lemieux*, J. Song, M.J. Kim, Y. Huang, A. Villa, M. Auer, X.D. Li and D.N. Wang. (2003) Protein Sci. 12, 2748-2756.
  28. DnaK and DnaJ facilitated the folding process and reduced inclusion body formation of magnesium transporter CorA overexpressed in Escherichia coli. Y. Chen, J. Song, S.F. Sui and D.N. Wang. (2003) Protein Expr. Puri. 12, 221-231.
  29. Electron microscopy of biological macromolecules. H.L. Li, D. Shi, G. Ren, H.X. Sui, D.H. Chen and D.N. Wang. (2003) In Recent Progress in Transmission Electron Microscopy. Edited by H.Q. Ye and Y.M. Wang. Science Press. 114-148.
  30. Recent advance of electron microscopy and its applications in structural biology. D.N. Wang, Y. Chen and S. Sui. (2003) J. Chin. Elec. Micros. Soc. 22, 449-456.
  31. The TetL tetracycline efflux protein from Bacillus subtilis is a dimer in the membrane and in detergent solution. M. Safferling, H. Griffith, J. Jin, J. Sharp, T.A. Krulwich and D.N. Wang. (2003)Biochemistry 42, 13969-13976.
  32. Importance of phospholipid and detergent in the crystallization of the human erythrocyte anion exchanger membrane domain. M.J. Lemieux*, R. Reithmeier and D.N. Wang. (2002) J. Struct. Biol. 137, 322-332.
  33. Purification and characterization of human erythrocyte glucose transporter in decylmaltoside detergent solution. J.M. Boulter and D.N. Wang. (2001) Protein Expr. Puri. 22, 337-248.
  34. Monomeric state and ligand binding of recombinant GABA transporter from Escherichia coli.X.D. Li, A. Villa, C. Gownley, M.J. Kim, J. Song, M. Auer and D.N. Wang. (2001) FEBS Lett. 494, 165-169.
  35. High-yield expression and functional analysis of Escherichia coli glycerol-3-phosphate transporter. M. Auer, M.J. Kim, M.J. Lemieux*, A. Villa, J. Song, X.D. Li and D.N. Wang. (2001)Biochemistry 40, 6628-6635.
  36. Trimeric ring-like structure of ArsA ATPase. H.W. Wang, J.Y. Lu, L.J. Li, S. Liu, D.N. Wang and S. Sui. (2000) FEBS Lett. 469, 105-110.

Earlier publications

  1. Purification and two-dimensional crystallization of bacterial cytochrome oxidases. A. Warne, D.N. Wang, and M. Saraste. (1995) Eur. J. Biochem. 234, 443-451.
  2. Atomic structure of plant light-harvesting complex determined by electron crystallography. W. Kühlbrandt, D.N. Wang and Y. Fujiyoshi. (1994) Nature. 367, 614-621.
  3. Three-dimensional structure of human erythrocyte anion exchanger, Band 3. D.N. Wang, V.E. Sarabia, R.A.F. Reithmeier and W. Kühlbrandt. (1994) EMBO J. 13, 3230-3235.
  4. Band 3 protein, structure, flexibility and function. D.N. Wang (1994) FEBS Lett. 346, 26-31.
  5. Two-dimensional structure of the membrane domain of human Band 3, the anion transport protein of the erythrocyte membrane. D.N. Wang, W. Kühlbrandt, V.E. Sarabia, and R.A.F. Reithmeier. (1993) EMBO J. 12, 2233-2239.
  6. Protein-lipid interactions in crystals of plant light-harvesting complex. S. Nussberger, K. Dörr, D.N. Wang and W. Kühlbrandt. (1993) J. Mol. Biol. 232, 347-356.
  7. Three-dimensional electron diffraction of plant light harvesting complex. D.N. Wang and W. Kühlbrandt. (1992) Biophys. J. 61, 287-297.
  8. High-resolution electron crystallography of the light-harvesting chlorophyll a/b-protein complex in three different media. D.N. Wang and W. Kühlbrandt. (1991) J. Mol. Biol. 217, 691-699.
  9. Effect of surface roughness of carbon support films on high-resolution electron diffraction of two-dimensional protein crystals. H.-J. Butt, D.N. Wang, P. Hansma and W. Kühlbrandt. (1991)Ultramicroscopy. 36, 307-318.
  10. Three-dimensional structure of plant light-harvesting complex determined by electron crystallography. W. Kühlbrandt and D.N. Wang. (1991) Nature. 350, 130-134.
    News and Views article commentary by M.C.W. Evans and J.H.A. Nugent.
  11. The three-dimensional structure of bacterial surface layers. S. Hovmöller, A. Sjögren and D.N. Wang. (1989) In Crystalline Bacterial Cell Surface Layers, (Eds. U.B. Sleytr, P. Messner, D. Pum and M. Sara). Springer-Verlag, Heidelberg.
  12. Structure determination and correction for distortions in high resolution electron microscopy by crystallographic image processing. D.N. Wang, S. Hovmöller, L. Kilhborg and M. Sundberg. (1988) Ultramicroscopy. 25, 303-316.
  13. Dislocations, domains and quenched phonon and phason strains in quasicrystals observed by high resolution electron microscopy. D.N. Wang, T. Ishimasa, H.-U. Nissen, S. Hovmöller and J. Rhyner. (1988) Phil. Mag. A58, 737-752.
  14. Structure determination of an oxide by electron microscopy and crystallographic image processing. S. Hovmöller, X. Zou, D.N. Wang, J.M. Gonzalez and M. Vallet-Regi. (1988) J. Solid State Chem. 77, 316-321.
  15. The three-dimensional structures of S-layer proteins of two novel Eubacterium species isolated from inflammatory human processes.A. Sjögren, D.N. Wang, S. Hovmöller, M. Haapasalo, H. Ranta, E. Kerosuo, H. Jousimies-Somer and K. Lounatmaa. (1988) Mol. Microbiol. 2, 81-87.
  16. Three-dimensional structure of the crystalline surface layer protein from Aeromonas hydrophila. S. Al-Karadaghi, D.N. Wang and S. Hovmöller. (1988) J. Struct. Biol. 101, 92-97.
  17. The three-dimensional structures of surface layer proteins of bacteria. S. Hovmöller, A. Sjögren and D.N. Wang. (1988) Progr. Biophys. Mol. Biol. 51, 131-161.
  18. Fivefold symmetry and Ni-Ti-V quasicrystals. Z. Zhang and D.N. Wang. (1987) J. Physics. 16, 557-562.
  19. Phonons, phasons and dislocations in Al-Mn quasicrystals studied by electron microscopy.D.N. Wang, T. Ishimasa, H.-U. Nissen and S. Hovmöller. (1987) Mater. Sci. Forum. 22-24, 381-396.
  20. The structure determination of a new phase by high resolution electron microscopy. D.N. Wang, H.Q. Ye and K.H. Kuo. (1986) Acta Cryst. B42, 21-25.
  21. The study of C14 Laves phase by convergent beam electron diffraction. D.N. Wang, A. Olsen and H.Q. Ye. (1985) Acta Phys. Sinica. 34, 681-684.
  22. The domain structures of C14 Laves phase. H.Q. Ye, D.N. Wang and K.H. Kuo. (1985) Phil. Mag. A51, 839-848.
  23. Fivefold symmetry in real and reciprocal spaces. H.Q. Ye, D.N. Wang and K.H. Kuo. (1985)Ultramicroscopy. 16, 273-278.